Chapter 6

Interlude : About HTML and Style

Why bother with HTML ?

At the start of chapter one, I declared that you don’t need to know anything about HTML to fully understand and learn XML. I have to admit that I wasn’t telling the whole truth here. It is possible to write XML documents without knowing anything about HTML, but if you want to present your documents without displaying the tags, it helps to know a little bit about how HTML is presented in a web browser. I am not saying here that your XML documents will have to be displayed in a web browser, but let’s start with something that most people have a working knowledge of.

If you already know HTML, you can safely skip the next few pages since they will be dealing with the basic principles of this language. Like XML, HTML is a markup language that is derived from SGML. At the most basic level HTML an XML documents are fairly similar. They both consist of a body of text and a set of embedded tags that describe the text. The main difference lies in the function of the tags. In XML the tags are used only to say something about the content of the text, whereas in HTML the tags also describe the appearance and layout of the document.

Another major difference is the fact that while HTML uses a set of predefined tags, XML has no such tags, only a set of rules for making them. This means that when you write an HTML document, you are limited to the tags that are described in this pre-made DTD. As we have seen in the previous chapters of this book, this is not the case in XML, where we were free to make up our tags as we went along.

In principle, HTML tags are supposed to describe the structure of the document. But since we are dealing with a fixed set of tags, certain stylistic conventions have been associated with the various HTML tags. This effectively means that your choice of HTML tags will not only say something about the structure of the document, but also affect the way it will look in a web browser. To illustrate this we can take a look at the example below:

<BODY>

 <H1>My Test Page</H1>

 <P>This is just to test the difference between HTML and XML</P>

</BODY>

This looks like a fairly standard piece of a XML/HTML document, right ? Now, add:

<?xml version="1.0">

In front of <BODY> and save it as an XML file and add:

<HTML><HEAD><TITLE>Test Page</TITLE></HEAD> in front of <BODY> and </HTML> after </BODY> and save it as an HTML file.

If you open the two files in a browser, they should look something like this:

[image: image1.png]
Our XML Example (above)

[image: image2.png]
Our HTML example (above)

As you can see, the XML file looks pretty much like the original source, but the HTML file looks very different. What has happened ? If we look at the structure of the document, it contains two elements: a heading and a paragraph of text. The reason why the browser automatically changes the appearance of the HTML text is that it recognises the two tags we are using and applies style to them. In HTML, Headings are commonly displayed slightly larger than the rest of the text and in bold font. The browser also adds a line break after the end tag of the heading. Paragraphs are normally displayed in the browsers default font and an empty line is added below the paragraph. This is a standard way of displaying tags that are common to all web browsers with a graphical interface, but there may be small individual differences depending both on the manufacturer of the browser and the version you are using. XML, on the other hand, has no such standard tags, and therefore no style is applied automatically to the different tags you are using. To change the layout of an XML document, you will therefore have to create one or more stylesheets that associate stylistic information with the different tags you have created. But let us leave XML for a little while and look at how this is done in HTML.

HTML and Style

When HTML was first introduced, it was a relatively limited markup language. The original tags dealt mainly with basic display and positioning of text on the page. As the popularity of the World Wide Web grew, more tags and attributes were added to HTML. Most of these were introduced to allow the author greater control over layout of the individual web pages. The result was a language that allowed for a great deal of flexibility in determining how your web pages would look. In HTML today, you are able to control the fonts and colours of your pages down to the smallest detail, through tag attributes. Most tags have a large number of attributes that controls layout. Let’s use the example above to illustrate how this can be done. This is what the original example looks like:

<HTML>

 <HEAD><TITLE>Test Page</TITLE></HEAD>

<BODY>

 <H1>My Test Page</H1>

 <P>This is just to test the difference between HTML and XML</P>

</BODY>

</HTML>

Now, as I explained, this little example is read in a particular way by the browser. This ‘default’ appearance can be changed fairly easily by using tag attributes. Now, let’s see if we can improve the way our example looks a little bit. If we start with the heading, we can try to centre it on the page and change the colour of it. To centre the heading we can add the following attribute inside the <H1> start tag:

ALIGN=”center”

If we save this and then reload the example in the browser, the heading will have moved from the left margin to the centre of the page. There is no attribute that allows you to change the colour of the heading, so we will have to use the tag with the COLOR attribute inside the heading, like this:

<H1 ALIGN=”center”>My Test Page</H1>

At this point, you should now have a heading that is centred and in red font. Let’s leave it at that and have a look at the short paragraph of text. For our main text I would like to change the font a little bit. I would like it to be slightly bigger and I am also not totally happy about the default font face. Like the heading tag, there is no attribute in the paragraph tag that deals with font appearance so I am afraid we will have to use the tag again. By using the attributes FACE and SIZE inside this tag, we will be able to modify our text:

<P>”Our Text”</P>

If we reload the page after these changes are made, the text should have become slighly larger and the font will have changed to Verdana. Before we move on, there are a few important things one should know about these font attributes in HTML:

COLOR :
Only a very limited number of colours (like red, green and blue) can be specified by name. If you want to use a colour like orchid for instance, you will have to specify them by hexadecimal values (#DA70D6 for orchid). If you are running Win 95/98 with a relatively recent browser version, the colours will probably work even if you just specify them by name (orchid does at least). Please note that in HTML, for some stupid reason the American spelling is being used for colour.

FACE:
When you specify a specific font to be used, the viewer will have to have this font installed on his/her machine for it to work. Otherwise the default font will be used.

SIZE:
In HTML, font sizes are specified by a number between 1 and 7, where 3 is the default. Size can be specified either by typing the absolute value or (like in the example above) by making it relative to the default value.

Before we finish this example , we can spice things up a little bit by changing the background colour of the page itself. This is done by using the BGCOLOR attribute inside the <BODY> tag. I mentioned orchid as an example above, so let’s try to use this colour for our document. Our new and revised HTML document should then look like this before we reload it for the final time:

<HTML>

 <HEAD>

 <TITLE>Test Page</TITLE>

 </HEAD>

<BODY BGCOLOR="#DA70D6">

 <H1 ALIGN="center">

 My Test Page

 </H1>

 <P>

 This is just to test the difference

 between HTML and XML

 </P>

</BODY>

</HTML>

And the result should look something like this:

[image: image3.png]I know...not very nice at all..

So, now that we have established that it is possible to change the general appearance of a web page without too much effort, where do style sheets enter into the picture ?

Style sheets in HTML

When Is said earlier that you could control your pages down to the smallest detail with straight HTML I was lying a little bit again. HTML markup allows you to do a lot, but not all. You will for instance have little or no control over margins, indents and line spacing – things that are familiar from traditional word processing programs. Attempts have been made to remedy this by introducing a number of new tag and tag attributes, but it has not really had the desired effect. As a result of this, HTML has moved away from being a content-oriented language and become more of a display language. This is, of course, part of the reason why XML was invented in the first place, but at the same time efforts have been made to “purify” HTML again. By ‘purify’ in this case, I mean trying to find new ways of adding style information to HTML documents, without introducing a myriad of new tags and attributes.

This is where the concept of Cascading Style Sheets (from now on referred to as CSS) comes into the picture. CSS was introduced to allow Web authors the possibility to apply typographic styles and spacing instructions for elements on an HTML page. This new language has three major advantages over the “old” HTML solution:

1. CSS allows far greater control over page layout than before. CSS introduces several concepts from traditional desktop publishing into the HTML world, like indenting, line spacing and more traditional font size controls.

2. With CSS, we move towards a separation of style and content in HTML. The separation is not as clear-cut as in XML, but it is definitely a step in the right direction.

3. The introduction of CSS can make site maintenance much easier. It is now possible to link several HTML pages to a single style sheet, which means that you can control the appearance of several pages by editing a single file.
This all sounds very nice of course, but there is still a major drawback with this: lacking browser support. The newer generation of browsers from the major companies support CSS fairly well, but there are still a lot of people out there who use older browser versions. Even in the latest releases there are some problems with CSS support, but things are improving.

So, we have heard a lot of nice things about CSS but how does it actually work? And even more importantly: Why do we need to bother with it if we are going to learn about XSL later on? The answer to the last question is simply that, at present, XML uses CSS for style presentation to a large extent. The reason for this is that the style part of XSL is not fully developed yet, so as an intermediate solution, CSS is being used together with XML. Because of this, we will use the rest of this chapter to look at the basics of CSS. Since we already have an HTML example, we can try to move the style information in this small document into a style sheet.

How do style sheets work ?

On the most basic level, style sheets consist of one or more rules for how a page element should be displayed. In our original example, the <H1> tag would be considered one page element, whereas the <P> tag is another. A typical CSS rule is made up of two parts:

1. A selector – Which identifies the page element that is affected by the rule.

2. A declaration – Which are the display instructions that applies to the page element.

To demonstrate how this works in practise, let us go back to our original HTML example. Just strip the test.html file of all the style information we have entered and save this as test2.html. It should look like this:

<HTML><HEAD><TITLE>Test Page</TITLE></HEAD>

<BODY>

 <H1>My Test Page</H1>

 <P>

 This is just to test the difference between HTML and XML

 </P>

</BODY>

</HTML>

at this point, we are right back where we started. Our job now is to add the exact same style information as before, but through a style sheet this time. The following line is a simple style sheet rule, which follows the description laid out above:

H1 { color: red }

H1 is in this case the selector that determines which page element we are creating a rule for. This means that { color: red } is the declaration. A declaration is made up of two parts: a property and a value. The property is a so-called stylistic parameter, which basically tells us what kind of information we want to add to the page element. color, font-size and font-face are examples of typical properties in CSS. The value is , reasonably enough, something that actually says something about how the page element will look in the end. In the example above, the color property tells us that we want to change the colour of the heading while the red value specifies the colour. The declaration is contained within curly brackets, and inside these brackets the property is separated from the value by a colon and a space. There is no limit to the number of property/value pair you can have inside a declaration, but they must be separated by semicolons.

Now that we have covered the most basic theory behind CSS, let us have a look at how this can be applied in practise. There are basically three ways style rules can be applied to an HTML document:

1. Inline styles

2. Embedded Style Sheet

3. External Style Sheet

Inline Styles

As the name implies, this means that style information is added to each individual element in an HTML document. This can be done by using the STYLE attribute, which is allowed within most HTML tags:

<H1 STYLE=”color: red”>”Our Text”</H1>

If you try to copy this line into our example you will see that it works – The heading will now be red again. As I have stated earlier, this may not work on all systems and browsers, but it is nevertheless a perfectly valid way of adding style information. The fact that it’s valid, does not necessarily mean that it’s a good idea. Inline style information is for all practical purposes equivalent to the FONT tag because the style information is still linked to each individual page element. This means that changes to style information will have to be made in each individual tag.

Embedded Style Sheets

Instead of adding style information to each individual element on the page, style rules can be added once in the top of the HTML document by using the <STYLE> tag inside the head of the document:

<HTML>

 <HEAD>

 <STYLE TYPE=”text/css”>

 <!--

 H1 { color: red }

-->

</STYLE>
 <TITLE>Test Page</TITLE>

</HEAD>

If we add these lines to heading of the original example (remember to delete the inline style information) and reload it in the browser, it should look exactly the same. What we have done now is to make this style rule valid for our entire document. If we add another heading (H1, mind you) below the one we have, it will become red also.

As with all other things, there are a few rules that need to be observed. First of all, the style rules must be placed in the heading of the HTML document. The TYPE attribute must be used to specify which style language you are using for your document. At the moment “text/css” is the most obvious choice, since this is the style language with most widespread support. Not all browsers understand the STYLE tag, so in order to avoid problems with the style information used within these tags it is necessary to wrap them in comment tags.

External Style Sheeets

A definite improvement over inline styles, but embedded style sheets are still not the best solution. If you have a large number of HTML documents, it will still be a very time-consuming task to make the same stylistic changes to all your documents, since the same changes will have to be made to all the documents. The most powerful way to use style sheets is to collect all the style information in one document and create links to this document from all your HTML files.

To demonstrate how this works, we will first have to create a file which will contain all our style information. To do this we must create a new file called “styletest.css” and copy our single style instruction into this file:

H1 { color: red }

Save this file in the same directory as “test2.html”. The next step is to replace the embedded style sheet from the previous example with this line:

<LINK REL=”stylesheet” HREF=”styletest.css” TYPE=”text/css”>

With these changes in place, the file should give you the exact same result as with the other two style sheets when you reload it in the browser. Not so surprising when you think about it. All we have done is to use three different methods to link the style information to our heading. The one noticeable difference between the embedded style sheet and the external style sheet, is the use of the REL attribute. This is used to describe the linked document’s relation to the current document, and the HREF attribute provides the address to external document.

Which one of these three methods you decide to use for your style sheets, depends entirely on personal taste, but there are a few reasons why it would be a good idea to always use external style sheets. First of all, this is the least time-consuming way of adding style to a large number of HTML documents. A large number of relatively simple HTML documents can be “improved upon” visually by linking them to an advanced stylesheet, and changes made to this style sheet will have an identical effect on all documents linked to it. A second point worth mentioning, is the fact that this use of style sheet will, to a large extent, separate style from content in your documents, but the distinction between style and content will probably never be as clear cut in HTML as it is in XML. A final reason for getting used to external style sheets is that we will use this method when we look at style in XML in the next two chapters. Before we get around to that, we will look a little bit closer at how style sheets are being used in HTML.

Using Style Sheets in HTML.

So far, we have only one simple processing instruction for our external style sheet. Before we started, I promised that we would create a web page that looked identical to the first page that used only standard HTML tags. A first step in this direction is to complete the rule regarding the heading. It is already red, but we have to centre it on the page also. This means we have to add a property/value pair inside the declaration for H1:

H1 { color: red;

 text-align: center }

If we save this little change to “styletest.css” and reload the HTML page, the heading should now have moved to the centre of the page. The next item on the agenda is the paragraph of text. At this point we encounter one of the major differences between HTML attributes and CSS commands. As we have seen earlier in this chapter, the size of text in HTML is specified as a number between one and seven. This is also possible in CSS, but it also allows us to specify font sizes in other ways. Since this is not meant to be a detailed introduction into CSS, we cannot go into detail about all the options regarding font control, but one of the most common ways to specify font size in CSS is by so called length-size. This means that you specify the length of the font either in points or in pixels. In the example below we have specified the size in points.

P { font-family: Verdana;

 font-size: 12pt }

The final thing we have to do, is to change the background colour of the body. The final result should look like this:

BODY
{ background-color: #DA70D6 }

H1
{ color: red;

 text-align: center }

P
{ font-family: Verdana;

 font-size: 12pt }

If you reload your browser after saving this file, the result you get should be more or less exactly the same as what you achieved by using the standard HTML tags and attributes. This is, basically, all we need to know about CSS before we start looking at how style works in XML. What we have been through in this chapter is in no way enough to become experts on CSS, but it should be enough to understand the basic principles behind this technology.

In the next chapter we will have a look at the XSL Transformation technology, and how we can convert XML documents into other formats.

PAGE
62

