1. Can there be an abstract class with no abstract methods in it? - Yes

2. Can an Interface be final? - No

3. Can an Interface have an inner class? - Yes.

4.
public interface abc

5.
{

6.

static int i=0; void dd();

7.

class a1

8.

{

9.

a1()

10.

{

11.

int j;

12.

System.out.println("inside");

13.

};

14.

public static void main(String a1[])

15.

{

16.

System.out.println("in interfia");

17.

}

18.

}

19.
}

20. Can we define private and protected modifiers for variables in interfaces? - No

21. What is Externalizable? - Externalizable is an Interface that extends Serializable Interface. And sends data into Streams in Compressed Format. It has two methods, writeExternal(ObjectOuput out) and readExternal(ObjectInput in)

22. What modifiers are allowed for methods in an Interface? - Only public and abstract modifiers are allowed for methods in interfaces.

23. What is a local, member and a class variable? - Variables declared within a method are “local” variables. Variables declared within the class i.e not within any methods are “member” variables (global variables). Variables declared within the class i.e not within any methods and are defined as “static” are class variables

24. What are the different identifier states of a Thread? - The different identifiers of a Thread are: R - Running or runnable thread, S - Suspended thread, CW - Thread waiting on a condition variable, MW - Thread waiting on a monitor lock, MS - Thread suspended waiting on a monitor lock

25. What are some alternatives to inheritance? - Delegation is an alternative to inheritance. Delegation means that you include an instance of another class as an instance variable, and forward messages to the instance. It is often safer than inheritance because it forces you to think about each message you forward, because the instance is of a known class, rather than a new class, and because it doesn’t force you to accept all the methods of the super class: you can provide only the methods that really make sense. On the other hand, it makes you write more code, and it is harder to re-use (because it is not a subclass).

26. Why isn’t there operator overloading? - Because C++ has proven by example that operator overloading makes code almost impossible to maintain. In fact there very nearly wasn’t even method overloading in Java, but it was thought that this was too useful for some very basic methods like print(). Note that some of the classes like DataOutputStream have unoverloaded methods like writeInt() and writeByte().

27. What does it mean that a method or field is “static”? - Static variables and methods are instantiated only once per class. In other words they are class variables, not instance variables. If you change the value of a static variable in a particular object, the value of that variable changes for all instances of that class. Static methods can be referenced with the name of the class rather than the name of a particular object of the class (though that works too). That’s how library methods like System.out.println() work. out is a static field in the java.lang.System class.

28. How do I convert a numeric IP address like 192.18.97.39 into a hostname like java.sun.com?

29.
String hostname = InetAddress.getByName("192.18.97.39").getHostName();

30. Difference between JRE/JVM/JDK?

31. Why do threads block on I/O? - Threads block on i/o (that is enters the waiting state) so that other threads may execute while the I/O operation is performed.

32. What is synchronization and why is it important? - With respect to multithreading, synchronization is the capability to control the access of multiple threads to shared resources. Without synchronization, it is possible for one thread to modify a shared object while another thread is in the process of using or updating that object’s value. This often leads to significant errors.

33. Is null a keyword? - The null value is not a keyword.

34. Which characters may be used as the second character of an identifier,but not as the first character of an identifier? - The digits 0 through 9 may not be used as the first character of an identifier but they may be used after the first character of an identifier.

35. What modifiers may be used with an inner class that is a member of an outer class? - A (non-local) inner class may be declared as public, protected, private, static, final, or abstract.

36. How many bits are used to represent Unicode, ASCII, UTF-16, and UTF-8 characters? - Unicode requires 16 bits and ASCII require 7 bits. Although the ASCII character set uses only 7 bits, it is usually represented as 8 bits. UTF-8 represents characters using 8, 16, and 18 bit patterns. UTF-16 uses 16-bit and larger bit patterns.

37. What are wrapped classes? - Wrapped classes are classes that allow primitive types to be accessed as objects.

38. What restrictions are placed on the location of a package statement within a source code file? - A package statement must appear as the first line in a source code file (excluding blank lines and comments).

39. What is the difference between preemptive scheduling and time slicing? - Under preemptive scheduling, the highest priority task executes until it enters the waiting or dead states or a higher priority task comes into existence. Under time slicing, a task executes for a predefined slice of time and then reenters the pool of ready tasks. The scheduler then determines which task should execute next, based on priority and other factors.

40. What is a native method? - A native method is a method that is implemented in a language other than Java.

41. What are order of precedence and associativity, and how are they used? - Order of precedence determines the order in which operators are evaluated in expressions. Associatity determines whether an expression is evaluated left-to-right or right-to-left

42. What is the catch or declare rule for method declarations? - If a checked exception may be thrown within the body of a method, the method must either catch the exception or declare it in its throws clause.

43. Can an anonymous class be declared as implementing an interface and extending a class? - An anonymous class may implement an interface or extend a superclass, but may not be declared to do both.

44. What is the range of the char type? - The range of the char type is 0 to 2^16 - 1.

Several things happen in a particular order to ensure the object is constructed properly:
1. Memory is allocated from heap to hold all instance variables and implementation-specific data of the object and its superclasses. Implementation-specific data includes pointers to class and method data.
2. The instance variables of the objects are initialized to their default values.
3. The constructor for the most derived class is invoked. The first thing a constructor does is call the constructor for its uppercase. This process continues until the constructor for java.lang.Object is called, as java.lang.Object is the base class for all objects in java.
4. Before the body of the constructor is executed, all instance variable initializers and initialization blocks are executed. Then the body of the constructor is executed. Thus, the constructor for the base class completes first and constructor for the most derived class completes last.

In Java, you can create a String object as below : String str = "abc"; & String str = new String("abc"); Why cant a button object be created as : Button bt = "abc"? Why is it compulsory to create a button object as: Button bt = new Button("abc"); Why this is not compulsory in String’s case?
Button bt1= "abc"; It is because "abc" is a literal string (something slightly different than a String object, by-the-way) and bt1 is a Button object. That simple. The only object in Java that can be assigned a literal String is java.lang.String. Important to not that you are NOT calling a java.lang.String constuctor when you type String s = "abc"; For example String x = "abc"; String y = "abc"; refer to the same object. While String x1 = new String("abc");
String x2 = new String("abc"); refer to two different objects.

What is the advantage of OOP?
You will get varying answers to this question depending on whom you ask. Major advantages of OOP are:
1. Simplicity: software objects model real world objects, so the complexity is reduced and the program structure is very clear;
2. Modularity: each object forms a separate entity whose internal workings are decoupled from other parts of the system;
3. Modifiability: it is easy to make minor changes in the data representation or the procedures in an OO program. Changes inside a class do not affect any other part of a program, since the only public interface that the external world has to a class is through the use of methods;
4. Extensibility: adding new features or responding to changing operating environments can be solved by introducing a few new objects and modifying some existing ones;
5. Maintainability: objects can be maintained separately, making locating and fixing problems easier;
6. Re-usability: objects can be reused in different programs

What are the main differences between Java and C++?
Everything is an object in Java(Single root hierarchy as everything gets derived from java.lang.Object). Java does not have all the complicated aspects of C++ (For ex: Pointers, templates, unions, operator overloading, structures etc..) The Java language promoters initially said "No pointers!", but when many programmers questioned how you can work without pointers, the promoters began saying "Restricted pointers." You can make up your mind whether it’s really a pointer or not. In any event, there’s no pointer arithmetic. There are no destructors in Java. (automatic garbage collection), Java does not support conditional compile (#ifdef/#ifndef type). Thread support is built into java but not in C++. Java does not support default arguments. There’s no scope resolution operator :: in Java. Java uses the dot for everything, but can get away with it since you can define elements only within a class. Even the method definitions must always occur within a class, so there is no need for scope resolution there either. There’s no "goto " statement in Java. Java doesn’t provide multiple inheritance (MI), at least not in the same sense that C++ does. Exception handling in Java is different because there are no destructors. Java has method overloading, but no operator overloading. The String class does use the + and += operators to concatenate strings and String expressions use automatic type conversion, but that’s a special built-in case. Java is interpreted for the most part and hence platform independent

What are interfaces?
Interfaces provide more sophisticated ways to organize and control the objects in your system.
The interface keyword takes the abstract concept one step further. You could think of it as a “pure” abstract class. It allows the creator to establish the form for a class: method names, argument lists, and return types, but no method bodies. An interface can also contain fields, but The interface keyword takes the abstract concept one step further. You could think of it as a “pure” abstract class. It allows the creator to establish the form for a class: method names, argument lists, and return types, but no method bodies. An interface can also contain fields, but an interface says: “This is what all classes that implement this particular interface will look like.” Thus, any code that uses a particular interface knows what methods might be called for that interface, and that’s all. So the interface is used to establish a “protocol” between classes. (Some object-oriented programming languages have a keyword called protocol to do the same thing.) Typical example from "Thinking in Java":

import java.util.*;
interface Instrument {
int i = 5; // static & final
// Cannot have method definitions:
void play(); // Automatically public
String what();
void adjust();
}
class Wind implements Instrument {
public void play() {
System.out.println("Wind.play()");
public String what() { return "Wind"; }
public void adjust() {}
}

How can you achieve Multiple Inheritance in Java?
Java’s interface mechanism can be used to implement multiple inheritance, with one important difference from c++ way of doing MI: the inherited interfaces must be abstract. This obviates the need to choose between different implementations, as with interfaces there are no implementations.

interface CanFight {
void fight();
interface CanSwim {
void swim();
interface CanFly {
void fly();
class ActionCharacter {
public void fight() {}
class Hero extends ActionCharacter implements CanFight, CanSwim, CanFly {
public void swim() {}
public void fly() {}
}

You can even achieve a form of multiple inheritance where you can use the *functionality* of classes rather than just the interface:

interface A {
void methodA();
}
class AImpl implements A {
void methodA() { //do stuff }
}
interface B {
void methodB();
}
class BImpl implements B {
void methodB() { //do stuff }
}
class Multiple implements A, B {
private A a = new A();
private B b = new B();
void methodA() { a.methodA(); }
void methodB() { b.methodB(); }
}
This completely solves the traditional problems of multiple inheritance in C++ where name clashes occur between multiple base classes. The coder of the derived class will have to explicitly resolve any clashes. Don’t you hate people who point out minor typos? Everything in the previous example is correct, except you need to instantiate an AImpl and BImpl. So class Multiple would look like this:
class Multiple implements A, B {
private A a = new AImpl();
private B b = new BImpl();
void methodA() { a.methodA(); }
void methodB() { b.methodB(); }
}

What is the difference between StringBuffer and String class?
A string buffer implements a mutable sequence of characters. A string buffer is like a String, but can be modified. At any point in time it contains some particular sequence of characters, but the length and content of the sequence can be changed through certain method calls. The String class represents character strings. All string literals in Java programs, such as "abc" are constant and implemented as instances of this class; their values cannot be changed after they are created. Strings in Java are known to be immutable. What it means is that every time you need to make a change to a String variable, behind the scene, a "new" String is actually being created by the JVM. For an example: if you change your String variable 2 times, then you end up with 3 Strings: one current and 2 that are ready for garbage collection. The garbage collection cycle is quite unpredictable and these additional unwanted Strings will take up memory until that cycle occurs. For better performance, use StringBuffers for string-type data that will be reused or changed frequently. There is more overhead per class than using String, but you will end up with less overall classes and consequently consume less memory. Describe, in general, how java’s garbage collector works? The Java runtime environment deletes objects when it determines that they are no longer being used. This process is known as garbage collection. The Java runtime environment supports a garbage collector that periodically frees the memory used by objects that are no longer needed. The Java garbage collector is a mark-sweep garbage collector that scans Java’s dynamic memory areas for objects, marking those that are referenced. After all possible paths to objects are investigated, those objects that are not marked (i.e. are not referenced) are known to be garbage and are collected. (A more complete description of our garbage collection algorithm might be "A compacting, mark-sweep collector with some conservative scanning".) The garbage collector runs synchronously when the system runs out of memory, or in response to a request from a Java program. Your Java program can ask the garbage collector to run at any time by calling System.gc(). The garbage collector requires about 20 milliseconds to complete its task so, your program should only run the garbage collector when there will be no performance impact and the program anticipates an idle period long enough for the garbage collector to finish its job. Note: Asking the garbage collection to run does not guarantee that your objects will be garbage collected. The Java garbage collector runs asynchronously when the system is idle on systems that allow the Java runtime to note when a thread has begun and to interrupt another thread (such as Windows 95). As soon as another thread becomes active, the garbage collector is asked to get to a consistent state and then terminate.

What’s the difference between == and equals method?

equals checks for the content of the string objects while == checks for the fact that the two String objects point to same memory location ie they are same references.

What are abstract classes, abstract methods?

Simply speaking a class or a method qualified with "abstract" keyword is an abstract class or abstract method. You create an abstract class when you want to manipulate a set of classes through a common interface. All derived-class methods that match the signature of the base-class declaration will be called using the dynamic binding mechanism. If you have an abstract class, objects of that class almost always have no meaning. That is, abstract class is meant to express only the interface and sometimes some default method implementations, and not a particular implementation, so creating an abstract class object makes no sense and are not allowed (compile will give you an error message if you try to create one). An abstract method is an incomplete method. It has only a declaration and no method body. Here is the syntax for an abstract method declaration: abstract void f(); If a class contains one or more abstract methods, the class must be qualified an abstract. (Otherwise, the compiler gives you an error message.). It’s possible to create a class as abstract without including any abstract methods. This is useful when you’ve got a class in which it doesn’t make sense to have any abstract methods, and yet you want to prevent any instances of that class. Abstract classes and methods are created because they make the abstractness of a class explicit, and tell both the user and the compiler how it was intended to be used.
For example:
abstract class Instrument {
int i; // storage allocated for each
public abstract void play();
public String what() {
return "Instrument";
public abstract void adjust();
}
class Wind extends Instrument {
public void play() {
System.out.println("Wind.play()");
}
public String what() { return "Wind"; }
public void adjust() {}
Abstract classes are classes for which there can be no instances at run time. i.e. the implementation of the abstract classes are not complete. Abstract methods are methods which have no defintion. i.e. abstract methods have to be implemented in one of the sub classes or else that class will also become Abstract.

What is the difference between an Applet and an Application?

A Java application is made up of a main() method declared as public static void that accepts a string array argument, along with any other classes that main() calls. It lives in the environment that the host OS provides. A Java applet is made up of at least one public class that has to be subclassed from java.awt.Applet. The applet is confined to living in the user’s Web browser, and the browser’s security rules, (or Sun’s appletviewer, which has fewer restrictions). The differences between an applet and an application are as follows:
1. Applets can be embedded in HTML pages and downloaded over the Internet whereas Applications have no special support in HTML for embedding or downloading.
2. Applets can only be executed inside a java compatible container, such as a browser or appletviewer whereas Applications are executed at command line by java.exe or jview.exe.
3. Applets execute under strict security limitations that disallow certain operations(sandbox model security) whereas Applications have no inherent security restrictions.
4. Applets don’t have the main() method as in applications. Instead they operate on an entirely different mechanism where they are initialized by init(),started by start(),stopped by stop() or destroyed by destroy().

Java says "write once, run anywhere". What are some ways this isn’t quite true?
As long as all implementaions of java are certified by sun as 100% pure java this promise of "Write once, Run everywhere" will hold true. But as soon as various java core implemenations start digressing from each other, this won’t be true anymore. A recent example of a questionable business tactic is the surreptitious behavior and interface modification of some of Java’s core classes in their own implementation of Java. Programmers who do not recognize these undocumented changes can build their applications expecting them to run anywhere that Java can be found, only to discover that their code works only on Microsoft’s own Virtual Machine, which is only available on Microsoft’s own operating systems.

What is the difference between a Vector and an Array. Discuss the advantages and disadvantages of both?
Vector can contain objects of different types whereas array can contain objects only of a single type.
- Vector can expand at run-time, while array length is fixed.
- Vector methods are synchronized while Array methods are not

What are java beans?
JavaBeans is a portable, platform-independent component model written in the Java programming language, developed in collaboration with industry leaders. It enables developers to write reusable components once and run them anywhere — benefiting from the platform-independent power of Java technology. JavaBeans acts as a Bridge between proprietary component models and provides a seamless and powerful means for developers to build components that run in ActiveX container applications. JavaBeans are usual Java classes which adhere to certain coding conventions:
1. Implements java.io.Serializable interface
2. Provides no argument constructor
3. Provides getter and setter methods for accessing it’s properties

What is RMI?
RMI stands for Remote Method Invocation. Traditional approaches to executing code on other machines across a network have been confusing as well as tedious and error-prone to implement. The nicest way to think about this problem is that some object happens to live on another machine, and that you can send a message to the remote object and get a result as if the object lived on your local machine. This simplification is exactly what Java Remote Method Invocation (RMI) allows you to do. Above excerpt is from "Thinking in java". For more information refer to any book on Java.

What does the keyword "synchronize" mean in java. When do you use it? What are the disadvantages of synchronization?

Synchronize is used when you want to make your methods thread safe. The disadvantage of synchronize is it will end up in slowing down the program. Also if not handled properly it will end up in dead lock.

What gives java it’s "write once and run anywhere" nature?

Java is compiled to be a byte code which is the intermediate language between source code and machine code. This byte code is not platorm specific and hence can be fed to any platform. After being fed to the JVM, which is specific to a particular operating system, the code platform specific machine code is generated thus making java platform independent.

What are native methods? How do you use them?

Native methods are methods written in other languages like C, C++, or even assembly language. You can call native methods from Java using JNI. Native methods are used when the implementation of a particular method is present in language other than Java say C, C++. To use the native methods in java we use the keyword native
public native method_a(). This native keyword is signal to the java compiler that the implementation of this method is in a language other than java. Native methods are used when we realize that it would take up a lot of rework to write that piece of already existing code in other language to Java.

What is JDBC? Describe the steps needed to execute a SQL query using JDBC.

We can connect to databases from java using JDBC. It stands for Java DataBase Connectivity.
Here are the steps:
1. Register the jdbc driver with the driver manager
2. Establish jdbc connection
3. Execute an sql statement
4. Process the results
5. Close the connection
Before doing these do import java.sql.*
JDBC is java based API for accessing data from the relational databases. JDBC provides a set of classes and interfaces for doing various database operations. The steps are:
Register/load the jdbc driver with the driver manager.
Establish the connection thru DriverManager.getConnection();
Fire a SQL thru conn.executeStatement();
Fetch the results in a result set
Process the results
Close statement/result set and connection object.

How many different types of JDBC drivers are present? Discuss them.
There are four JDBC driver types.
Type 1: JDBC-ODBC Bridge plus ODBC Driver:
The first type of JDBC driver is the JDBC-ODBC Bridge. It is a driver that provides JDBC access to databases through ODBC drivers. The ODBC driver must be configured on the client for the bridge to work. This driver type is commonly used for prototyping or when there is no JDBC driver available for a particular DBMS.
Type 2: Native-API partly-Java Driver:
The Native to API driver converts JDBC commands to DBMS-specific native calls. This is much like the restriction of Type 1 drivers. The client must have some binary code loaded on its machine. These drivers do have an advantage over Type 1 drivers because they interface directly with the database.
Type 3: JDBC-Net Pure Java Driver:
The JDBC-Net drivers are a three-tier solution. This type of driver translates JDBC calls into a database-independent network protocol that is sent to a middleware server. This server then translates this DBMS-independent protocol into a DBMS-specific protocol, which is sent
to a particular database. The results are then routed back through the middleware server and sent back to the client. This type of solution makes it possible to implement a pure Java client. It also makes it possible to swap databases without affecting the client.
Type 4: Native-Protocol Pure Java Driver
These are pure Java drivers that communicate directly with the vendor’s database. They do this by converting JDBC commands directly into the database engine’s native protocol. This driver has no additional translation or middleware layer, which improves performance tremendously.
What does the "static" keyword mean in front of a variable? A method? A class? Curly braces {}?
static variable
- means a class level variable
static method:
-does not have "this". It is not allowed to access the not static members of the class.
can be invoked enev before a single instance of a class is created.
eg: main
static class:
no such thing.
static free floating block:
is executed at the time the class is loaded. There can be multiple such blocks. This may be useful to load native libraries when using native methods.
eg:
native void doThis(){
static{
System.loadLibrary("myLibrary.lib");
}

Access specifiers: "public", "protected", "private", nothing?

In the case of Public, Private and Protected, that is used to describe which programs can access that class or method: Public – any other class from any package can instantiate and execute the classes and methods. Protected – only subclasses and classes inside of the package can access the classes and methods. Private – the original class is the only class allowed to executed the methods.

What does the "final" keyword mean in front of a variable? A method? A class?

FINAL for a variable : value is constant
FINAL for a method : cannot be overridden
FINAL for a class : cannot be derived
A final variable cannot be reassigned,
but it is not constant. For instance,
final StringBuffer x = new StringBuffer()
x.append("hello");
is valid. X cannot have a new value in it,but nothing stops operations on the object
that it refers, including destructive operations. Also, a final method cannot be overridden
or hidden by new access specifications.This means that the compiler can choose
to in-line the invocation of such a method.(I don’t know if any compiler actually does
this, but it’s true in theory.) The best example of a final class is
String, which defines a class that cannot be derived.

Does Java have "goto"?

No.

What synchronization constructs does Java provide? How do they work?

The two common features that are used are:
1. Synchronized keyword - Used to synchronize a method or a block of code. When you synchronize a method, you are in effect synchronizing the code within the method using the monitor of the current object for the lock.
The following have the same effect.
synchronized void foo() {
}
and
void foo() {
synchronized(this) {
}
If you synchronize a static method, then you are synchronizing across all objects of the same class, i.e. the monitor you are using for the lock is one per class, not one per object.
2. wait/notify. wait() needs to be called from within a synchronized block. It will first release the lock acquired from the synchronization and then wait for a signal. In Posix C, this part is equivalent to the pthread_cond_wait method, which waits for an OS signal to continue. When somebody calls notify() on the object, this will signal the code which has been waiting, and the code will continue from that point. If there are several sections of code that are in the wait state, you can call notifyAll() which will notify all threads that are waiting on the monitor for the current object. Remember that both wait() and notify() have to be called from blocks of code that are synchronized on the monitor for the current object.

Does Java have multiple inheritance?

Java does not support multiple inheritence directly but it does thru the concept of interfaces.
We can make a class implement a number of interfaces if we want to achieve multiple inheritence type of functionality of C++.

How does exception handling work in Java?
1.It separates the working/functional code from the error-handling code by way of try-catch clauses.
2.It allows a clean path for error propagation. If the called method encounters a situation it can’t manage, it can throw an exception and let the calling method deal with it.
3.By enlisting the compiler to ensure that "exceptional" situations are anticipated and accounted for, it enforces powerful coding.
4.Exceptions are of two types: Compiler-enforced exceptions, or checked exceptions. Runtime exceptions, or unchecked exceptions. Compiler-enforced (checked) exceptions are instances of the Exception class or one of its subclasses — excluding the RuntimeException branch. The compiler expects all checked exceptions to be appropriately handled. Checked exceptions must be declared in the throws clause of the method throwing them — assuming, of course, they’re not being caught within that same method. The calling method must take care of these exceptions by either catching or declaring them in its throws clause. Thus, making an exception checked forces the us to pay heed to the possibility of it being thrown. An example of a checked exception is java.io.IOException. As the name suggests, it throws whenever an input/output operation is abnormally terminated.

Does Java have destructors?

Garbage collector does the job working in the background
Java does not have destructors; but it has finalizers that does a similar job.
the syntax is
public void finalize(){
}
if an object has a finalizer, the method is invoked before the system garbage collects the object

What does the "abstract" keyword mean in front of a method? A class?

Abstract keyword declares either a method or a class.
If a method has a abstract keyword in front of it,it is called abstract method.Abstract method hs no body.It has only arguments and return type.Abstract methods act as placeholder methods that are implemented in the subclasses.
Abstract classes can’t be instantiated.If a class is declared as abstract,no objects of that class can be created.If a class contains any abstract method it must be declared as abstract

Are Java constructors inherited ? If not, why not?

You cannot inherit a constructor. That is, you cannot create a instance of a subclass using a constructor of one of it’s superclasses. One of the main reasons is because you probably don’t want to overide the superclasses constructor, which would be possible if they were inherited. By giving the developer the ability to override a superclasses constructor you would erode the encapsulation abilities of the language.

1. How could Java classes direct program messages to the system console, but error messages, say to a file?
The class System has a variable out that represents the standard output, and the variable err that represents the standard error device. By default, they both point at the system console. This how the standard output could be re-directed:

Stream st =

 new Stream (new

 FileOutputStream ("techinterviews_com.txt"));

System.setErr(st);

System.setOut(st);

2. What’s the difference between an interface and an abstract class?
An abstract class may contain code in method bodies, which is not allowed in an interface. With abstract classes, you have to inherit your class from it and Java does not allow multiple inheritance. On the other hand, you can implement multiple interfaces in your class.

3. Why would you use a synchronized block vs. synchronized method?
Synchronized blocks place locks for shorter periods than synchronized methods.

4. Explain the usage of the keyword transient?
This keyword indicates that the value of this member variable does not have to be serialized with the object. When the class will be de-serialized, this variable will be initialized with a default value of its data type (i.e. zero for integers).

5. How can you force garbage collection?
You can’t force GC, but could request it by calling System.gc(). JVM does not guarantee that GC will be started immediately.

6. How do you know if an explicit object casting is needed?
If you assign a superclass object to a variable of a subclass’s data type, you need to do explicit casting. For example:

Object a;Customer b; b = (Customer) a;

When you assign a subclass to a variable having a supeclass type, the casting is performed automatically.

7. What’s the difference between the methods sleep() and wait()
The code sleep(1000); puts thread aside for exactly one second. The code wait(1000), causes a wait of up to one second. A thread could stop waiting earlier if it receives the notify() or notifyAll() call. The method wait() is defined in the class Object and the method sleep() is defined in the class Thread.

8. Can you write a Java class that could be used both as an applet as well as an application?
Yes. Add a main() method to the applet.

9. What’s the difference between constructors and other methods?
Constructors must have the same name as the class and can not return a value. They are only called once while regular methods could be called many times.

10. Can you call one constructor from another if a class has multiple constructors
Yes. Use this() syntax.

11. Explain the usage of Java packages.
This is a way to organize files when a project consists of multiple modules. It also helps resolve naming conflicts when different packages have classes with the same names. Packages access level also allows you to protect data from being used by the non-authorized classes.

12. If a class is located in a package, what do you need to change in the OS environment to be able to use it?
You need to add a directory or a jar file that contains the package directories to the CLASSPATH environment variable. Let’s say a class Employee belongs to a package com.xyz.hr; and is located in the file c:/dev/com.xyz.hr.Employee.java. In this case, you’d need to add c:/dev to the variable CLASSPATH. If this class contains the method main(), you could test it from a command prompt window as follows:
c:\>java com.xyz.hr.Employee

13. What’s the difference between J2SDK 1.5 and J2SDK 5.0?
There’s no difference, Sun Microsystems just re-branded this version.

14. What would you use to compare two String variables - the operator == or the method equals()?
I’d use the method equals() to compare the values of the Strings and the = = to check if two variables point at the same instance of a String object.

15. Does it matter in what order catch statements for FileNotFoundException and IOExceptipon are written?
A. Yes, it does. The FileNoFoundException is inherited from the IOException. Exception’s subclasses have to be caught first.

16. Can an inner class declared inside of a method access local variables of this method?
It’s possible if these variables are final.

17. What can go wrong if you replace && with & in the following code:
18. String a=null;

19. if (a!=null && a.length()>10)

{...}

A single ampersand here would lead to a NullPointerException.

20. What’s the main difference between a Vector and an ArrayList
Java Vector class is internally synchronized and ArrayList is not.

21. When should the method invokeLater()be used?
This method is used to ensure that Swing components are updated through the event-dispatching thread.

22. How can a subclass call a method or a constructor defined in a superclass?
Use the following syntax: super.myMethod(); To call a constructor of the superclass, just write super(); in the first line of the subclass’s constructor.

23. What’s the difference between a queue and a stack?
Stacks works by last-in-first-out rule (LIFO), while queues use the FIFO rule.

24. You can create an abstract class that contains only abstract methods. On the other hand, you can create an interface that declares the same methods. So can you use abstract classes instead of interfaces?
Sometimes. But your class may be a descendent of another class and in this case the interface is your only option.

25. What comes to mind when you hear about a young generation in Java?
Garbage collection.

26. What comes to mind when someone mentions a shallow copy in Java?
Object cloning.

27. If you’re overriding the method equals() of an object, which other method you might also consider?
hashCode()

28. You are planning to do an indexed search in a list of objects. Which of the two Java collections should you use: ArrayList or LinkedList?
ArrayList

29. How would you make a copy of an entire Java object with its state?
Have this class implement Cloneable interface and call its method clone().

30. How can you minimize the need of garbage collection and make the memory use more effective?
Use object pooling and weak object references.

31. There are two classes: A and B. The class B need to inform a class A when some important event has happened. What Java technique would you use to implement it?
If these classes are threads I’d consider notify() or notifyAll(). For regular classes you can use the Observer interface.

32. What access level do you need to specify in the class declaration to ensure that only classes from the same directory can access it?
You do not need to specify any access level, and Java will use a default package access level.

Typical interview questions
This is a "dirty dozen" set of typical interview questions that Dan Johnston from PPR Career sent us. Refer to the set of answers for details.

1. Tell me about yourself (refer to same answer #1 below)

2. What are your greatest strengths/weaknesses? (refer to sample answers #11 & 12)

3. Why did you leave your last job? (refer to sample answer #22)

4. Why do you want to work for us? (refer to sample answers #29 & 31)

5. How did you like your old job? (refer to sample answer #14)

6. What kind of salary are you looking for? (refer to sample answer #55)

7. What do you know about our company? (PPR Career will coach but library visit is appropriate: refer to sample answer #3)

8. Why should we hire you? (refer to sample answer #51)

9. What did you think of your old boss? (refer to sample answer #28)

10. What are your long-range goals? (refer to sample answers #48, 49 & 50)

11. Do you like to work overtime? (refer to sample answer #35)

12. You seem overqualified (or under-qualified). (refer to sample answer #52)

Top of Form

Bottom of Form

Java Web development interview questions
1. Can we use the constructor, instead of init(), to initialize servlet? - Yes , of course you can use the constructor instead of init(). There’s nothing to stop you. But you shouldn’t. The original reason for init() was that ancient versions of Java couldn’t dynamically invoke constructors with arguments, so there was no way to give the constructur a ServletConfig. That no longer applies, but servlet containers still will only call your no-arg constructor. So you won’t have access to a ServletConfig or ServletContext.

2. How can a servlet refresh automatically if some new data has entered the database? - You can use a client-side Refresh or Server Push.

3. The code in a finally clause will never fail to execute, right? - Using System.exit(1); in try block will not allow finally code to execute.

4. How many messaging models do JMS provide for and what are they? - JMS provide for two messaging models, publish-and-subscribe and point-to-point queuing.

5. What information is needed to create a TCP Socket? - The Local System?s IP Address and Port Number. And the Remote System’s IPAddress and Port Number.

6. What Class.forName will do while loading drivers? - It is used to create an instance of a driver and register it with the DriverManager. When you have loaded a driver, it is available for making a connection with a DBMS.

7. How to Retrieve Warnings? - SQLWarning objects are a subclass of SQLException that deal with database access warnings. Warnings do not stop the execution of an application, as exceptions do; they simply alert the user that something did not happen as planned. A warning can be reported on a Connection object, a Statement object (including PreparedStatement and CallableStatement objects), or a ResultSet object. Each of these classes has a getWarnings method, which you must invoke in order to see the first warning reported on the calling object

8.
SQLWarning warning = stmt.getWarnings();

9.
if (warning != null)

10.
{

11.

while (warning != null)

12.

{

13.

System.out.println("Message: " + warning.getMessage());

14.

System.out.println("SQLState: " + warning.getSQLState());

15.

System.out.print("Vendor error code: ");

16.

System.out.println(warning.getErrorCode());

17.

warning = warning.getNextWarning();

18.

}

19.
}

20. How many JSP scripting elements are there and what are they? - There are three scripting language elements: declarations, scriptlets, expressions.

21. In the Servlet 2.4 specification SingleThreadModel has been deprecated, why? - Because it is not practical to have such model. Whether you set isThreadSafe to true or false, you should take care of concurrent client requests to the JSP page by synchronizing access to any shared objects defined at the page level.

22. What are stored procedures? How is it useful? - A stored procedure is a set of statements/commands which reside in the database. The stored procedure is pre-compiled and saves the database the effort of parsing and compiling sql statements everytime a query is run. Each database has its own stored procedure language, usually a variant of C with a SQL preproceesor. Newer versions of db’s support writing stored procedures in Java and Perl too. Before the advent of 3-tier/n-tier architecture it was pretty common for stored procs to implement the business logic(A lot of systems still do it). The biggest advantage is of course speed. Also certain kind of data manipulations are not achieved in SQL. Stored procs provide a mechanism to do these manipulations. Stored procs are also useful when you want to do Batch updates/exports/houseKeeping kind of stuff on the db. The overhead of a JDBC Connection may be significant in these cases.

23. How do I include static files within a JSP page? - Static resources should always be included using the JSP include directive. This way, the inclusion is performed just once during the translation phase. Do note that you should always supply a relative URL for the file attribute. Although you can also include static resources using the action, this is not advisable as the inclusion is then performed for each and every request.

24. Why does JComponent have add() and remove() methods but Component does not? - because JComponent is a subclass of Container, and can contain other components and jcomponents.

25. How can I implement a thread-safe JSP page? - You can make your JSPs thread-safe by having them implement the SingleThreadModel interface. This is done by adding the directive <%@ page isThreadSafe="false" % > within your JSP page.

JDBC and JSP interview questions
1. What is the query used to display all tables names in SQL Server (Query analyzer)?

2.
select * from information_schema.tables

3. How many types of JDBC Drivers are present and what are they?- There are 4 types of JDBC Drivers

· JDBC-ODBC Bridge Driver

· Native API Partly Java Driver

· Network protocol Driver

· JDBC Net pure Java Driver

4. Can we implement an interface in a JSP?- No

5. What is the difference between ServletContext and PageContext?- ServletContext: Gives the information about the container. PageContext: Gives the information about the Request

6. What is the difference in using request.getRequestDispatcher() and context.getRequestDispatcher()?- request.getRequestDispatcher(path): In order to create it we need to give the relative path of the resource, context.getRequestDispatcher(path): In order to create it we need to give the absolute path of the resource.

7. How to pass information from JSP to included JSP?- Using <%jsp:param> tag.

8. What is the difference between directive include and jsp include?- <%@ include>: Used to include static resources during translation time. JSP include: Used to include dynamic content or static content during runtime.

9. What is the difference between RequestDispatcher and sendRedirect?- RequestDispatcher: server-side redirect with request and response objects. sendRedirect : Client-side redirect with new request and response objects.

10. How does JSP handle runtime exceptions?- Using errorPage attribute of page directive and also we need to specify isErrorPage=true if the current page is intended to URL redirecting of a JSP.

11. How do you delete a Cookie within a JSP?

12.
Cookie mycook = new Cookie("name","value");

13.
response.addCookie(mycook);

14.
Cookie killmycook = new Cookie("mycook","value");

15.
killmycook.setMaxAge(0);

16.
killmycook.setPath("/");

17.
killmycook.addCookie(killmycook);

18. How do I mix JSP and SSI #include?- If you’re just including raw HTML, use the #include directive as usual inside your .jsp file.

19.
<!--#include file="data.inc"-->

But it’s a little trickier if you want the server to evaluate any JSP code that’s inside the included file. If your data.inc file contains jsp code you will have to use

<%@ vinclude="data.inc" %>

The <!–#include file="data.inc"–> is used for including non-JSP files.

20. I made my class Cloneable but I still get Can’t access protected method clone. Why?- Some of the Java books imply that all you have to do in order to have your class support clone() is implement the Cloneable interface. Not so. Perhaps that was the intent at some point, but that’s not the way it works currently. As it stands, you have to implement your own public clone() method, even if it doesn’t do anything special and just calls super.clone().

21. Why is XML such an important development?- It removes two constraints which were holding back Web developments: dependence on a single, inflexible document type (HTML) which was being much abused for tasks it was never designed for; the complexity of full SGML, whose syntax allows many powerful but hard-to-program options. XML allows the flexible development of user-defined document types. It provides a robust, non-proprietary, persistent, and verifiable file format for the storage and transmission of text and data both on and off the Web; and it removes the more complex options of SGML, making it easier to program for.

22. What is the fastest type of JDBC driver?- JDBC driver performance will depend on a number of issues:

· the quality of the driver code,

· the size of the driver code,

· the database server and its load,

· network topology,

· the number of times your request is translated to a different API.

In general, all things being equal, you can assume that the more your request and response change hands, the slower it will be. This means that Type 1 and Type 3 drivers will be slower than Type 2 drivers (the database calls are make at least three translations versus two), and Type 4 drivers are the fastest (only one translation).

23. How do I find whether a parameter exists in the request object?

24. boolean hasFoo = !(request.getParameter("foo") == null

25.
|| request.getParameter("foo").equals(""));

or

boolean hasParameter =

request.getParameterMap().contains(theParameter); //(which works in Servlet 2.3+)

26. How can I send user authentication information while makingURLConnection?- You’ll want to use HttpURLConnection.setRequestProperty and set all the appropriate headers to HTTP authorization.

JSP interview questions
Q: What are the most common techniques for reusing functionality in object-oriented systems?
A: The two most common techniques for reusing functionality in object-oriented systems are class inheritance and object composition.

Class inheritance lets you define the implementation of one class in terms of another’s. Reuse by subclassing is often referred to as white-box reuse.
Object composition is an alternative to class inheritance. Here, new functionality is obtained by assembling or composing objects to get more complex functionality. This is known as black-box reuse.

Q: Why would you want to have more than one catch block associated with a single try block in Java?
A: Since there are many things can go wrong to a single executed statement, we should have more than one catch(s) to catch any errors that might occur.

Q: What language is used by a relational model to describe the structure of a database?
A: The Data Definition Language.

Q: What is JSP? Describe its concept.
A: JSP is Java Server Pages. The JavaServer Page concept is to provide an HTML document with the ability to plug in content at selected locations in the document. (This content is then supplied by the Web server along with the rest of the HTML document at the time the document is downloaded).

Q: What does the JSP engine do when presented with a JavaServer Page to process?
A: The JSP engine builds a servlet. The HTML portions of the JavaServer Page become Strings transmitted to print methods of a PrintWriter object. The JSP tag portions result in calls to methods of the appropriate JavaBean class whose output is translated into more calls to a println method to place the result in the HTML document.

Core Java Interview Questions

[image: image1.png]

[image: image2.png]

Question: What is transient variable?
Answer: Transient variable can't be serialize. For example if a variable is declared as transient in a Serializable class and the class is written to an ObjectStream, the value of the variable can't be written to the stream instead when the class is retrieved from the ObjectStream the value of the variable becomes null.

Question: Name the containers which uses Border Layout as their default layout?
Answer: Containers which uses Border Layout as their default are: window, Frame and Dialog classes.

Question: What do you understand by Synchronization?
Answer: Synchronization is a process of controlling the access of shared resources by the multiple threads in such a manner that only one thread can access one resource at a time. In non synchronized multithreaded application, it is possible for one thread to modify a shared object while another thread is in the process of using or updating the object's value. Synchronization prevents such type of data corruption.
E.g. Synchronizing a function:
public synchronized void Method1 () {
 // Appropriate method-related code.
}
E.g. Synchronizing a block of code inside a function:
public myFunction (){
 synchronized (this) {
 // Synchronized code here.
 }
}

Question: What is Collection API?
Answer: The Collection API is a set of classes and interfaces that support operation on collections of objects. These classes and interfaces are more flexible, more powerful, and more regular than the vectors, arrays, and hashtables if effectively replaces.
Example of classes: HashSet, HashMap, ArrayList, LinkedList, TreeSet and TreeMap.
Example of interfaces: Collection, Set, List and Map.

Question: Is Iterator a Class or Interface? What is its use?
Answer: Iterator is an interface which is used to step through the elements of a Collection.

Question: What is similarities/difference between an Abstract class and Interface?
Answer: Differences are as follows:

· Interfaces provide a form of multiple inheritance. A class can extend only one other class.

· Interfaces are limited to public methods and constants with no implementation. Abstract classes can have a partial implementation, protected parts, static methods, etc.
· A Class may implement several interfaces. But in case of abstract class, a class may extend only one abstract class.
· Interfaces are slow as it requires extra indirection to to find corresponding method in in the actual class. Abstract classes are fast.
Similarities:

· Neither Abstract classes or Interface can be instantiated.

Question: How to define an Abstract class?
Answer: A class containing abstract method is called Abstract class. An Abstract class can't be instantiated.
Example of Abstract class:
abstract class testAbstractClass {
 protected String myString;
 public String getMyString() {
 return myString;
 }
 public abstract string anyAbstractFunction();
}

Question: How to define an Interface?
Answer: In Java Interface defines the methods but does not implement them. Interface can include constants. A class that implements the interfaces is bound to implement all the methods defined in Interface.
Emaple of Interface:

public interface sampleInterface {
 public void functionOne();

 public long CONSTANT_ONE = 1000;
}

Question: Explain the user defined Exceptions?
Answer: User defined Exceptions are the separate Exception classes defined by the user for specific purposed. An user defined can created by simply sub-classing it to the Exception class. This allows custom exceptions to be generated (using throw) and caught in the same way as normal exceptions.
Example:
class myCustomException extends Exception {
 // The class simply has to exist to be an exception
}

Question: Explain the new Features of JDBC 2.0 Core API?
Answer: The JDBC 2.0 API includes the complete JDBC API, which includes both core and Optional Package API, and provides inductrial-strength database computing capabilities.
New Features in JDBC 2.0 Core API:
· Scrollable result sets- using new methods in the ResultSet interface allows programmatically move the to particular row or to a position relative to its current position

· JDBC 2.0 Core API provides the Batch Updates functionality to the java applications.
· Java applications can now use the ResultSet.updateXXX methods.
· New data types - interfaces mapping the SQL3 data types
· Custom mapping of user-defined types (UTDs)
· Miscellaneous features, including performance hints, the use of character streams, full precision for java.math.BigDecimal values, additional security, and support for time zones in date, time, and timestamp values.

Question: Explain garbage collection?
Answer: Garbage collection is one of the most important feature of Java. Garbage collection is also called automatic memory management as JVM automatically removes the unused variables/objects (value is null) from the memory. User program cann't directly free the object from memory, instead it is the job of the garbage collector to automatically free the objects that are no longer referenced by a program. Every class inherits finalize() method from java.lang.Object, the finalize() method is called by garbage collector when it determines no more references to the object exists. In Java, it is good idea to explicitly assign null into a variable when no more in use. I Java on calling System.gc() and Runtime.gc(), JVM tries to recycle the unused objects, but there is no guarantee when all the objects will garbage collected.

Question: How you can force the garbage collection?
Answer: Garbage collection automatic process and can't be forced.

Question: What is OOPS?
Answer: OOP is the common abbreviation for Object-Oriented Programming.

Question: Describe the principles of OOPS.
Answer: There are three main principals of oops which are called Polymorphism, Inheritance and Encapsulation.

Question: Explain the Encapsulation principle.
Answer: Encapsulation is a process of binding or wrapping the data and the codes that operates on the data into a single entity. This keeps the data safe from outside interface and misuse. One way to think about encapsulation is as a protective wrapper that prevents code and data from being arbitrarily accessed by other code defined outside the wrapper.

Question: Explain the Inheritance principle.
Answer: Inheritance is the process by which one object acquires the properties of another object.

Question: Explain the Polymorphism principle.
Answer: The meaning of Polymorphism is something like one name many forms. Polymorphism enables one entity to be used as as general category for different types of actions. The specific action is determined by the exact nature of the situation. The concept of polymorphism can be explained as "one interface, multiple methods".

Question: Explain the different forms of Polymorphism.
Answer: From a practical programming viewpoint, polymorphism exists in three distinct forms in Java:
· Method overloading

· Method overriding through inheritance

· Method overriding through the Java interface

Question: What are Access Specifiers available in Java?
Answer: Access specifiers are keywords that determines the type of access to the member of a class. These are:
· Public

· Protected

· Private

· Defaults

Question: Describe the wrapper classes in Java.
Answer: Wrapper class is wrapper around a primitive data type. An instance of a wrapper class contains, or wraps, a primitive value of the corresponding type.
Following table lists the primitive types and the corresponding wrapper classes:
	Primitive
	Wrapper

	boolean
	 java.lang.Boolean

	byte
	 java.lang.Byte

	char
	 java.lang.Character

	double
	 java.lang.Double

	float
	 java.lang.Float

	int
	 java.lang.Integer

	long
	 java.lang.Long

	short
	 java.lang.Short

	void
	 java.lang.Void

Question: Read the following program:
public class test {
public static void main(String [] args) {
 int x = 3;
 int y = 1;
 if (x = y)
 System.out.println("Not equal");
 else
 System.out.println("Equal");
 }
}
What is the result?
 A. The output is “Equal”
 B. The output in “Not Equal”
 C. An error at " if (x = y)" causes compilation to fall.
 D. The program executes but no output is show on console.
Answer: C

Question: what is the class variables ?
Answer: When we create a number of objects of the same class, then each object will share a common copy of variables. That means that there is only one copy per class, no matter how many objects are created from it. Class variables or static variables are declared with the static keyword in a class, but mind it that it should be declared outside outside a class. These variables are stored in static memory. Class variables are mostly used for constants, variable that never change its initial value. Static variables are always called by the class name. This variable is created when the program starts i.e. it is created before the instance is created of class by using new operator and gets destroyed when the programs stops. The scope of the class variable is same a instance variable. The class variable can be defined anywhere at class level with the keyword static. It initial value is same as instance variable. When the class variable is defined as int then it's initial value is by default zero, when declared boolean its default value is false and null for object references. Class variables are associated with the class, rather than with any object.
Question: What is the difference between the instanceof and getclass, these two are same or not ?
Answer: instanceof is a operator, not a function while getClass is a method of java.lang.Object class. Consider a condition where we use
if(o.getClass().getName().equals("java.lang.Math")){ }
This method only checks if the classname we have passed is equal to java.lang.Math. The class java.lang.Math is loaded by the bootstrap ClassLoader. This class is an abstract class.This class loader is responsible for loading classes. Every Class object contains a reference to the ClassLoader that defines. getClass() method returns the runtime class of an object. It fetches the java instance of the given fully qualified type name. The code we have written is not necessary, because we should not compare getClass.getName(). The reason behind it is that if the two different class loaders load the same class but for the JVM, it will consider both classes as different classes so, we can't compare their names. It can only gives the implementing class but can't compare a interface, but instanceof operator can.
The instanceof operator compares an object to a specified type. We can use it to test if an object is an instance of a class, an instance of a subclass, or an instance of a class that implements a particular interface. We should try to use instanceof operator in place of getClass() method. Remember instanceof opeator and getClass are not same. Try this example, it will help you to better understand the difference between the two.
Interface one{
}

Class Two implements one {
}
Class Three implements one {
}

public class Test {
public static void main(String args[]) {
one test1 = new Two();
one test2 = new Three();
System.out.println(test1 instanceof one); //true
System.out.println(test2 instanceof one); //true
System.out.println(Test.getClass().equals(test2.getClass())); //false
}
}

Core Java Interview Question Page 1

[image: image8.png]

[image: image9.png]

Question: How could Java classes direct program messages to the system console, but error messages, say to a file?
Answer: The class System has a variable out that represents the standard output, and the variable err that represents the standard error device. By default, they both point at the system console. This how the standard output could be re-directed:

Stream st = new Stream(new FileOutputStream("output.txt")); System.setErr(st); System.setOut(st);

Question: What's the difference between an interface and an abstract class?
Answer: An abstract class may contain code in method bodies, which is not allowed in an interface. With abstract classes, you have to inherit your class from it and Java does not allow multiple inheritance. On the other hand, you can implement multiple interfaces in your class.

Question: Why would you use a synchronized block vs. synchronized method?
Answer: Synchronized blocks place locks for shorter periods than synchronized methods.

Question: Explain the usage of the keyword transient?
Answer: This keyword indicates that the value of this member variable does not have to be serialized with the object. When the class will be de-serialized, this variable will be initialized with a default value of its data type (i.e. zero for integers).

Question: How can you force garbage collection?
Answer: You can't force GC, but could request it by calling System.gc(). JVM does not guarantee that GC will be started immediately.

Question: How do you know if an explicit object casting is needed?
Answer: If you assign a superclass object to a variable of a subclass's data type, you need to do explicit casting. For example:

Object a; Customer b; b = (Customer) a;

When you assign a subclass to a variable having a supeclass type, the casting is performed automatically.

Question: What's the difference between the methods sleep() and wait()
Answer: The code sleep(1000); puts thread aside for exactly one second. The code wait(1000), causes a wait of up to one second. A thread could stop waiting earlier if it receives the notify() or notifyAll() call. The method wait() is defined in the class Object and the method sleep() is defined in the class Thread.

Question: Can you write a Java class that could be used both as an applet as well as an application?
Answer: Yes. Add a main() method to the applet.

Question: What's the difference between constructors and other methods?
Answer: Constructors must have the same name as the class and can not return a value. They are only called once while regular methods could be called many times.

Question: Can you call one constructor from another if a class has multiple constructors
Answer: Yes. Use this() syntax.

Question: Explain the usage of Java packages.
Answer: This is a way to organize files when a project consists of multiple modules. It also helps resolve naming conflicts when different packages have classes with the same names. Packages access level also allows you to protect data from being used by the non-authorized classes.

Question: If a class is located in a package, what do you need to change in the OS environment to be able to use it?
Answer: You need to add a directory or a jar file that contains the package directories to the CLASSPATH environment variable. Let's say a class Employee belongs to a package com.xyz.hr; and is located in the file c:\dev\com\xyz\hr\Employee.java. In this case, you'd need to add c:\dev to the variable CLASSPATH. If this class contains the method main(), you could test it from a command prompt window as follows:

c:\>java com.xyz.hr.Employee

Question: What's the difference between J2SDK 1.5 and J2SDK 5.0?
Answer: There's no difference, Sun Microsystems just re-branded this version.

Question: What would you use to compare two String variables - the operator == or the method equals()?

Answer: I'd use the method equals() to compare the values of the Strings and the == to check if two variables point at the same instance of a String object.

Core Java Interview Question Page 2

[image: image13.png]

[image: image14.png]

Question: Does it matter in what order catch statements for FileNotFoundException and IOExceptipon are written?

Answer: Yes, it does. The FileNoFoundException is inherited from the IOException. Exception's subclasses have to be caught first.

Question: Can an inner class declared inside of a method access local variables of this method?

Answer: It's possible if these variables are final.

Question: What can go wrong if you replace && with & in the following code: String a=null; if (a!=null && a.length()>10) {...}
Answer: A single ampersand here would lead to a NullPointerException.

Question: What's the main difference between a Vector and an ArrayList

Answer: Java Vector class is internally synchronized and ArrayList is not.

Question: When should the method invokeLater()be used?
Answer: This method is used to ensure that Swing components are updated through the event-dispatching thread.

Question: How can a subclass call a method or a constructor defined in a superclass?

Answer: Use the following syntax: super.myMethod(); To call a constructor of the superclass, just write super(); in the first line of the subclass's constructor.

For senior-level developers:
Question: What's the difference between a queue and a stack?

Answer: Stacks works by last-in-first-out rule (LIFO), while queues use the FIFO rule

Question: You can create an abstract class that contains only abstract methods. On the other hand, you can create an interface that declares the same methods. So can you use abstract classes instead of interfaces?

Answer: Sometimes. But your class may be a descendent of another class and in this case the interface is your only option.

Question: What comes to mind when you hear about a young generation in Java?

Answer: Garbage collection.

Question: What comes to mind when someone mentions a shallow copy in Java?

Answer: Object cloning.

Question: If you're overriding the method equals() of an object, which other method you might also consider?

Answer: hashCode()

Question: You are planning to do an indexed search in a list of objects. Which of the two Java collections should you use: ArrayList or LinkedList?

Answer: ArrayList

Question: How would you make a copy of an entire Java object with its state?

Answer: Have this class implement Cloneable interface and call its method clone().

Question: How can you minimize the need of garbage collection and make the memory use more effective?

Answer: Use object pooling and weak object references.

Question: There are two classes: A and B. The class B need to inform a class A when some important event has happened. What Java technique would you use to implement it?

Answer: If these classes are threads I'd consider notify() or notifyAll(). For regular classes you can use the Observer interface.

Question: What access level do you need to specify in the class declaration to ensure that only classes from the same directory can access it?

Answer: You do not need to specify any access level, and Java will use a default package access level .

Core Java Interview Question Page 3

[image: image18.png]

[image: image19.png]

Question: When you declare a method as abstract method ?

Answer: When i want child class to implement the behavior of the method.

Question: Can I call a abstract method from a non abstract method ?

Answer: Yes, We can call a abstract method from a Non abstract method in a Java abstract class

Question: What is the difference between an Abstract class and Interface in Java ? or can you explain when you use Abstract classes ?

Answer: Abstract classes let you define some behaviors; they force your subclasses to provide others. These abstract classes will provide the basic funcationality of your applicatoin, child class which inherited this class will provide the funtionality of the abstract methods in abstract class. When base class calls this method, Java calls the method defined by the child class.

· An Interface can only declare constants and instance methods, but cannot implement default behavior.

· Interfaces provide a form of multiple inheritance. A class can extend only one other class.

· Interfaces are limited to public methods and constants with no implementation. Abstract classes can have a partial implementation, protected parts, static methods, etc.

· A Class may implement several interfaces. But in case of abstract class, a class may extend only one abstract class.

· Interfaces are slow as it requires extra indirection to find corresponding method in the actual class. Abstract classes are fast.

Question: What is user-defined exception in java ?

Answer: User-defined expections are the exceptions defined by the application developer which are errors related to specific application. Application Developer can define the user defined exception by inherite the Exception class as shown below. Using this class we can throw new exceptions.

Java Example : public class noFundException extends Exception { } Throw an exception using a throw statement: public class Fund { ... public Object getFunds() throws noFundException { if (Empty()) throw new noFundException(); ... } } User-defined exceptions should usually be checked.

Core Java Interview Question Page 4

[image: image23.png]

[image: image24.png]

Question: What is the difference between checked and Unchecked Exceptions in Java ?

Answer: All predefined exceptions in Java are either a checked exception or an unchecked exception. Checked exceptions must be caught using try .. catch() block or we should throw the exception using throws clause. If you dont, compilation of program will fail.

Java Exception Hierarchy +--------+ | Object | +--------+ | | +-----------+ | Throwable | +-----------+ / \ / \ +-------+ +-----------+ | Error | | Exception | +-------+ +-----------+ / | \ / | \ ________/ ______/ \ +------------------+ unchecked checked | RuntimeException | +------------------+ / | | \ _________________/ unchecked

Question: Explain garbage collection ?

Answer: Garbage collection is an important part of Java's security strategy. Garbage collection is also called automatic memory management as JVM automatically removes the unused variables/objects from the memory. The name "garbage collection" implies that objects that are no longer needed by the program are "garbage" and can be thrown away. A more accurate and up-to-date metaphor might be "memory recycling." When an object is no longer referenced by the program, the heap space it occupies must be recycled so that the space is available for subsequent new objects. The garbage collector must somehow determine which objects are no longer referenced by the program and make available the heap space occupied by such unreferenced objects. In the process of freeing unreferenced objects, the garbage collector must run any finalizers of objects being freed.

Question: How you can force the garbage collection ?

Answer: Garbage collection automatic process and can't be forced. We can call garbage collector in Java by calling System.gc() and Runtime.gc(), JVM tries to recycle the unused objects, but there is no guarantee when all the objects will garbage collected.

Question: What are the field/method access levels (specifiers) and class access levels ?

Answer: Each field and method has an access level:

· private: accessible only in this class

· (package): accessible only in this package

· protected: accessible only in this package and in all subclasses of this class

· public: accessible everywhere this class is available

Similarly, each class has one of two possible access levels:

· (package): class objects can only be declared and manipulated by code in this package

· public: class objects can be declared and manipulated by code in any package

Question: What are the static fields & static Methods ?

Answer: If a field or method defined as a static, there is only one copy for entire class, rather than one copy for each instance of class. static method cannot accecss non-static field or call non-static method

Example Java Code

static int counter = 0;

A public static field or method can be accessed from outside the class using either the usual notation:

Java-class-object.field-or-method-name

or using the class name instead of the name of the class object:

Java- class-name.field-or-method-name

Question: What are the Final fields & Final Methods ?

Answer: Fields and methods can also be declared final. A final method cannot be overridden in a subclass. A final field is like a constant: once it has been given a value, it cannot be assigned to again.

Java Code

private static final int MAXATTEMPTS = 10;

Question: Describe the wrapper classes in Java ?

Answer: Wrapper class is wrapper around a primitive data type. An instance of a wrapper class contains, or wraps, a primitive value of the corresponding type.

Following table lists the primitive types and the corresponding wrapper classes:

	Primitive
	Wrapper

	boolean
	java.lang.Boolean

	byte
	java.lang.Byte

	char
	java.lang.Character

	double
	java.lang.Double

	float
	java.lang.Float

	int
	java.lang.Integer

	long
	java.lang.Long

	short
	java.lang.Short

	void
	java.lang.Void

Core Java Interview Question Page 5

[image: image28.png]

[image: image29.png]

Question: What are different types of inner classes ?

Answer: Inner classes nest within other classes. A normal class is a direct member of a package. Inner classes, which became available with Java 1.1, are four types

· Static member classes

· Member classes

· Local classes

· Anonymous classes

Static member classes - a static member class is a static member of a class. Like any other static method, a static member class has access to all static methods of the parent, or top-level, class.

Member Classes - a member class is also defined as a member of a class. Unlike the static variety, the member class is instance specific and has access to any and all methods and members, even the parent's this reference.

Local Classes - Local Classes declared within a block of code and these classes are visible only within the block.

Anonymous Classes - These type of classes does not have any name and its like a local class

Java Anonymous Class Example public class SomeGUI extends JFrame { ... button member declarations ... protected void buildGUI() { button1 = new JButton(); button2 = new JButton(); ... button1.addActionListener(new java.awt.event.ActionListener() <------ Anonymous Class { public void actionPerformed(java.awt.event.ActionEvent e) { // do something } });

Question: What are the uses of Serialization?

Answer: In some types of applications you have to write the code to serialize objects, but in many cases serialization is performed behind the scenes by various server-side containers.

These are some of the typical uses of serialization:

· To persist data for future use.

· To send data to a remote computer using such client/server Java technologies as RMI or socket programming.

· To "flatten" an object into array of bytes in memory.

· To exchange data between applets and servlets.

· To store user session in Web applications.

· To activate/passivate enterprise java beans.

· To send objects between the servers in a cluster.

Question: what is a collection ?

Answer: Collection is a group of objects. java.util package provides important types of collections. There are two fundamental types of collections they are Collection and Map. Collection types hold a group of objects, Eg. Lists and Sets where as Map types hold group of objects as key, value pairs Eg. HashMap and Hashtable.

Question: For concatenation of strings, which method is good, StringBuffer or String ?

Answer: StringBuffer is faster than String for concatenation.

Question: What is Runnable interface ? Are there any other ways to make a java program as multithred java program?

Answer: There are two ways to create new kinds of threads:

- Define a new class that extends the Thread class
- Define a new class that implements the Runnable interface, and pass an object of that class to a Thread's constructor.
- An advantage of the second approach is that the new class can be a subclass of any class, not just of the Thread class.
Here is a very simple example just to illustrate how to use the second approach to creating threads: class myThread implements Runnable { public void run() { System.out.println("I'm running!"); } } public class tstRunnable { public static void main(String[] args) { myThread my1 = new myThread(); myThread my2 = new myThread(); new Thread(my1).start(); new Thread(my2).start(); }
Core Java Interview Question Page 6

[image: image33.png]

[image: image34.png]

Question: How can i tell what state a thread is in ?

Answer: Prior to Java 5, isAlive() was commonly used to test a threads state. If isAlive() returned false the thread was either new or terminated but there was simply no way to differentiate between the two.

Starting with the release of Tiger (Java 5) you can now get what state a thread is in by using the getState() method which returns an Enum of Thread.States. A thread can only be in one of the following states at a given point in time.

	NEW
	A Fresh thread that has not yet started to execute.

	RUNNABLE
	A thread that is executing in the Java virtual machine.

	BLOCKED
	A thread that is blocked waiting for a monitor lock.

	WAITING
	A thread that is wating to be notified by another thread.

	TIMED_WAITING
	A thread that is wating to be notified by another thread for a specific amount of time

	TERMINATED
	A thread whos run method has ended.

The folowing code prints out all thread states. public class ThreadStates{ public static void main(String[] args){ Thread t = new Thread(); Thread.State e = t.getState(); Thread.State[] ts = e.values(); for(int i = 0; i < ts.length; i++){ System.out.println(ts[i]); } } }

Question: What methods java providing for Thread communications ?

Answer: Java provides three methods that threads can use to communicate with each other: wait, notify, and notifyAll. These methods are defined for all Objects (not just Threads). The idea is that a method called by a thread may need to wait for some condition to be satisfied by another thread; in that case, it can call the wait method, which causes its thread to wait until another thread calls notify or notifyAll.

Question: What is the difference between notify and notify All methods ?

Answer: A call to notify causes at most one thread waiting on the same object to be notified (i.e., the object that calls notify must be the same as the object that called wait). A call to notifyAll causes all threads waiting on the same object to be notified. If more than one thread is waiting on that object, there is no way to control which of them is notified by a call to notify (so it is often better to use notifyAll than notify).

Question: What is synchronized keyword? In what situations you will Use it?

Answer: Synchronization is the act of serializing access to critical sections of code. We will use this keyword when we expect multiple threads to access/modify the same data. To understand synchronization we need to look into thread execution manner.

Threads may execute in a manner where their paths of execution are completely independent of each other. Neither thread depends upon the other for assistance. For example, one thread might execute a print job, while a second thread repaints a window. And then there are threads that require synchronization, the act of serializing access to critical sections of code, at various moments during their executions. For example, say that two threads need to send data packets over a single network connection. Each thread must be able to send its entire data packet before the other thread starts sending its data packet; otherwise, the data is scrambled. This scenario requires each thread to synchronize its access to the code that does the actual data-packet sending.

If you feel a method is very critical for business that needs to be executed by only one thread at a time (to prevent data loss or corruption), then we need to use synchronized keyword.

EXAMPLE

Some real-world tasks are better modeled by a program that uses threads than by a normal, sequential program. For example, consider a bank whose accounts can be accessed and updated by any of a number of automatic teller machines (ATMs). Each ATM could be a separate thread, responding to deposit and withdrawal requests from different users simultaneously. Of course, it would be important to make sure that two users did not access the same account simultaneously. This is done in Java using synchronization, which can be applied to individual methods, or to sequences of statements.

One or more methods of a class can be declared to be synchronized. When a thread calls an object's synchronized method, the whole object is locked. This means that if another thread tries to call any synchronized method of the same object, the call will block until the lock is released (which happens when the original call finishes). In general, if the value of a field of an object can be changed, then all methods that read or write that field should be synchronized to prevent two threads from trying to write the field at the same time, and to prevent one thread from reading the field while another thread is in the process of writing it.

Here is an example of a BankAccount class that uses synchronized methods to ensure that deposits and withdrawals cannot be performed simultaneously, and to ensure that the account balance cannot be read while either a deposit or a withdrawal is in progress. (To keep the example simple, no check is done to ensure that a withdrawal does not lead to a negative balance.)

public class BankAccount { private double balance; // constructor: set balance to given amount public BankAccount(double initialDeposit) { balance = initialDeposit; } public synchronized double Balance() { return balance; } public synchronized void Deposit(double deposit) { balance += deposit; } public synchronized void Withdraw(double withdrawal) { balance -= withdrawal; } }

Note: that the BankAccount's constructor is not declared to be synchronized. That is because it can only be executed when the object is being created, and no other method can be called until that creation is finished.

There are cases where we need to synchronize a group of statements, we can do that using synchrozed statement.

Java Code Example synchronized (B) { if (D > B.Balance()) { ReportInsuffucientFunds(); } else { B.Withdraw(D); } }

Core Java Interview Question Page 7

[image: image38.png]

[image: image39.png]

Question: What is serialization ?

Answer: Serialization is the process of writing complete state of java object into output stream, that stream can be file or byte array or stream associated with TCP/IP socket.

Question: What does the Serializable interface do ?

Answer: Serializable is a tagging interface; it prescribes no methods. It serves to assign the Serializable data type to the tagged class and to identify the class as one which the developer has designed for persistence. ObjectOutputStream serializes only those objects which implement this interface.

Question: How do I serialize an object to a file ?

Answer: To serialize an object into a stream perform the following actions:

- Open one of the output streams, for exaample FileOutputStream
- Chain it with the ObjectOutputStream - Call the method writeObject() providingg the instance of a Serializable object as an argument.
- Close the streams

Java Code --------- try{ fOut= new FileOutputStream("c:\\emp.ser"); out = new ObjectOutputStream(fOut); out.writeObject(employee); //serializing System.out.println("An employee is serialized into c:\\emp.ser"); } catch(IOException e){ e.printStackTrace(); }

Question: How do I deserilaize an Object?

Answer: To deserialize an object, perform the following steps:

- Open an input stream
- Chain it with the ObjectInputStream - Call the method readObject() and cast tthe returned object to the class that is being deserialized.
- Close the streams
Java Code try{ fIn= new FileInputStream("c:\\emp.ser"); in = new ObjectInputStream(fIn); //de-serializing employee Employee emp = (Employee) in.readObject(); System.out.println("Deserialized " + emp.fName + " " + emp.lName + " from emp.ser "); }catch(IOException e){ e.printStackTrace(); }catch(ClassNotFoundException e){ e.printStackTrace(); }

Question: What is Externalizable Interface ?

Answer : Externalizable interface is a subclass of Serializable. Java provides Externalizable interface that gives you more control over what is being serialized and it can produce smaller object footprint. (You can serialize whatever field values you want to serialize)

This interface defines 2 methods: readExternal() and writeExternal() and you have to implement these methods in the class that will be serialized. In these methods you'll have to write code that reads/writes only the values of the attributes you are interested in. Programs that perform serialization and deserialization have to write and read these attributes in the same sequence.

Question: Explain garbage collection ?

Answer: Garbage collection is an important part of Java's security strategy. Garbage collection is also called automatic memory management as JVM automatically removes the unused variables/objects from the memory. The name "garbage collection" implies that objects that are no longer needed by the program are "garbage" and can be thrown away. A more accurate and up-to-date metaphor might be "memory recycling." When an object is no longer referenced by the program, the heap space it occupies must be recycled so that the space is available for subsequent new objects. The garbage collector must somehow determine which objects are no longer referenced by the program and make available the heap space occupied by such unreferenced objects. In the process of freeing unreferenced objects, the garbage collector must run any finalizers of objects being freed

Question : How you can force the garbage collection ?

Answer : Garbage collection automatic process and can't be forced. We can call garbage collector in Java by calling System.gc() and Runtime.gc(), JVM tries to recycle the unused objects, but there is no guarantee when all the objects will garbage collected.

Question : What are the field/method access levels (specifiers) and class access levels ?

Answer: Each field and method has an access level:

· private: accessible only in this class

· (package): accessible only in this package

· protected: accessible only in this package and in all subclasses of this class

· public: accessible everywhere this class is available

Similarly, each class has one of two possible access levels:

· (package): class objects can only be declared and manipulated by code in this package

public: class objects can be declared and manipulated by code in any package

Core Java Interview Question Page 8

[image: image43.png]

[image: image44.png]

Question: What are the static fields & static Methods ?

Answer: If a field or method defined as a static, there is only one copy for entire class, rather than one copy for each instance of class. static method cannot accecss non-static field or call non-static method

Example Java Code

static int counter = 0;

A public static field or method can be accessed from outside the class using either the usual notation:

Java-class-object.field-or-method-name

or using the class name instead of the name of the class object:

Java- class-name.field-or-method-name

Question: What are the Final fields & Final Methods ?

Answer: Fields and methods can also be declared final. A final method cannot be overridden in a subclass. A final field is like a constant: once it has been given a value, it cannot be assigned to again.

Java Code

private static final int MAXATTEMPTS = 10;

Question: Describe the wrapper classes in Java ?

Answer: Wrapper class is wrapper around a primitive data type. An instance of a wrapper class contains, or wraps, a primitive value of the corresponding type.

Following table lists the primitive types and the corresponding wrapper classes:

	Primitive
	Wrapper

	boolean
	java.lang.Boolean

	byte
	java.lang.Byte

	char
	java.lang.Character

	double
	java.lang.Double

	float
	java.lang.Float

	int
	java.lang.Integer

	long
	java.lang.Long

	short
	java.lang.Short

	void
	java.lang.Void

Question: What are different types of inner classes ?

Answer: Inner classes nest within other classes. A normal class is a direct member of a package. Inner classes, which became available with Java 1.1, are four types

· Static member classes

· Member classes

· Local classes

· Anonymous classes

Static member classes - a static member class is a static member of a class. Like any other static method, a static member class has access to all static methods of the parent, or top-level, class.

Member Classes - a member class is also defined as a member of a class. Unlike the static variety, the member class is instance specific and has access to any and all methods and members, even the parent's this reference.

Local Classes - Local Classes declared within a block of code and these classes are visible only within the block.

Anonymous Classes - These type of classes does not have any name and its like a local class

Java Anonymous Class Example public class SomeGUI extends JFrame { ... button member declarations ... protected void buildGUI() { button1 = new JButton(); button2 = new JButton(); ... button1.addActionListener(new java.awt.event.ActionListener() <------ Anonymous Class { public void actionPerformed(java.awt.event.ActionEvent e) { // do something } });

Core Java Interview Question Page 9

[image: image48.png]

[image: image49.png]

Question: What are the uses of Serialization?

Answer: In some types of applications you have to write the code to serialize objects, but in many cases serialization is performed behind the scenes by various server-side containers.

These are some of the typical uses of serialization:

· To persist data for future use.

· To send data to a remote computer using such client/server Java technologies as RMI or socket programming.

· To "flatten" an object into array of bytes in memory.

· To exchange data between applets and servlets.

· To store user session in Web applications .

· To activate/passivate enterprise java beans.

· To send objects between the servers in a cluster.

Question: what is a collection ?

Answer: Collection is a group of objects. java.util package provides important types of collections. There are two fundamental types of collections they are Collection and Map. Collection types hold a group of objects, Eg. Lists and Sets where as Map types hold group of objects as key, value pairs Eg. HashMap and Hashtable.

Question: For concatenation of strings, which method is good, StringBuffer or String ?

Answer: StringBuffer is faster than String for concatenation.

Question: What is Runnable interface ? Are there any other ways to make a java program as multithred java program?

Answer: There are two ways to create new kinds of threads:

- Define a new class that extends the Thread class
- Define a new class that implements the Runnable interface, and pass an object of that class to a Thread's constructor.
- An advantage of the second approach is that the new class can be a subclass of any class, not just of the Thread class.
Here is a very simple example just to illustrate how to use the second approach to creating threads: class myThread implements Runnable { public void run() { System.out.println("I'm running!"); } } public class tstRunnable { public static void main(String[] args) { myThread my1 = new myThread(); myThread my2 = new myThread(); new Thread(my1).start(); new Thread(my2).start(); }

Question: How can i tell what state a thread is in ?

Answer: Prior to Java 5, isAlive() was commonly used to test a threads state. If isAlive() returned false the thread was either new or terminated but there was simply no way to differentiate between the two.

Starting with the release of Tiger (Java 5) you can now get what state a thread is in by using the getState() method which returns an Enum of Thread.States. A thread can only be in one of the following states at a given point in time.

	NEW
	A Fresh thread that has not yet started to execute.

	RUNNABLE
	A thread that is executing in the Java virtual machine.

	BLOCKED
	A thread that is blocked waiting for a monitor lock.

	WAITING
	A thread that is wating to be notified by another thread.

	TIMED_WAITING
	A thread that is wating to be notified by another thread for a specific amount of time

	TERMINATED
	A thread whos run method has ended.

The folowing code prints out all thread states. public class ThreadStates{ public static void main(String[] args){ Thread t = new Thread(); Thread.State e = t.getState(); Thread.State[] ts = e.values(); for(int i = 0; i < ts.length; i++){ System.out.println(ts[i]); } } }
Question: What methods java providing for Thread communications ?
Answer: Java provides three methods that threads can use to communicate with each other: wait, notify, and notifyAll. These methods are defined for all Objects (not just Threads). The idea is that a method called by a thread may need to wait for some condition to be satisfied by another thread; in that case, it can call the wait method, which causes its thread to wait until another thread calls notify or notifyAll.
Core Java Interview Question Page 10

[image: image53.png]

[image: image54.png]

Question: What is the difference between notify and notify All methods ?

Answer: A call to notify causes at most one thread waiting on the same object to be notified (i.e., the object that calls notify must be the same as the object that called wait). A call to notifyAll causes all threads waiting on the same object to be notified. If more than one thread is waiting on that object, there is no way to control which of them is notified by a call to notify (so it is often better to use notifyAll than notify).

Question: What is synchronized keyword? In what situations you will Use it?

Answer: Synchronization is the act of serializing access to critical sections of code. We will use this keyword when we expect multiple threads to access/modify the same data. To understand synchronization we need to look into thread execution manner.

Threads may execute in a manner where their paths of execution are completely independent of each other. Neither thread depends upon the other for assistance. For example, one thread might execute a print job, while a second thread repaints a window. And then there are threads that require synchronization, the act of serializing access to critical sections of code, at various moments during their executions. For example, say that two threads need to send data packets over a single network connection. Each thread must be able to send its entire data packet before the other thread starts sending its data packet; otherwise, the data is scrambled. This scenario requires each thread to synchronize its access to the code that does the actual data-packet sending.

If you feel a method is very critical for business that needs to be executed by only one thread at a time (to prevent data loss or corruption), then we need to use synchronized keyword.

EXAMPLE

Some real-world tasks are better modeled by a program that uses threads than by a normal, sequential program. For example, consider a bank whose accounts can be accessed and updated by any of a number of automatic teller machines (ATMs). Each ATM could be a separate thread, responding to deposit and withdrawal requests from different users simultaneously. Of course, it would be important to make sure that two users did not access the same account simultaneously. This is done in Java using synchronization, which can be applied to individual methods, or to sequences of statements.

One or more methods of a class can be declared to be synchronized. When a thread calls an object's synchronized method, the whole object is locked. This means that if another thread tries to call any synchronized method of the same object, the call will block until the lock is released (which happens when the original call finishes). In general, if the value of a field of an object can be changed, then all methods that read or write that field should be synchronized to prevent two threads from trying to write the field at the same time, and to prevent one thread from reading the field while another thread is in the process of writing it.

Here is an example of a BankAccount class that uses synchronized methods to ensure that deposits and withdrawals cannot be performed simultaneously, and to ensure that the account balance cannot be read while either a deposit or a withdrawal is in progress. (To keep the example simple, no check is done to ensure that a withdrawal does not lead to a negative balance.)

public class BankAccount { private double balance; // constructor: set balance to given amount public BankAccount(double initialDeposit) { balance = initialDeposit; } public synchronized double Balance() { return balance; } public synchronized void Deposit(double deposit) { balance += deposit; } public synchronized void Withdraw(double withdrawal) { balance -= withdrawal; } }

Note: that the BankAccount's constructor is not declared to be synchronized. That is because it can only be executed when the object is being created, and no other method can be called until that creation is finished.

There are cases where we need to synchronize a group of statements, we can do that using synchrozed statement.

Java Code Example synchronized (B) { if (D > B.Balance()) { ReportInsuffucientFunds(); } else { B.Withdraw(D); } }
Core Java Interview Question Page 11

[image: image58.png]

[image: image59.png]

Question: What is serialization ?

Answer: Serialization is the process of writing complete state of java object into output stream, that stream can be file or byte array or stream associated with TCP/IP socket.

Question: What does the Serializable interface do ?

Answer: Serializable is a tagging interface; it prescribes no methods. It serves to assign the Serializable data type to the tagged class and to identify the class as one which the developer has designed for persistence. ObjectOutputStream serializes only those objects which implement this interface.

Question: How do I serialize an object to a file ?

Answer: To serialize an object into a stream perform the following actions:

- Open one of the output streams, for exxample FileOutputStream
- Chain it with the ObjectOutputStream <
- Call the method writeObject() providinng the instance of a Serializable object as an argument.
- Close the streams

Java Code --------- try{ fOut= new FileOutputStream("c:\\emp.ser"); out = new ObjectOutputStream(fOut); out.writeObject(employee); //serializing System.out.println("An employee is serialized into c:\\emp.ser"); } catch(IOException e){ e.printStackTrace(); }

Question: How do I deserilaize an Object?

Answer: To deserialize an object, perform the following steps:

- Open an input stream
- Chain it with the ObjectInputStream - Call the method readObject() and cast the returned object to the class that is being deserialized.
- Close the streams
Java Code try{ fIn= new FileInputStream("c:\\emp.ser"); in = new ObjectInputStream(fIn); //de-serializing employee Employee emp = (Employee) in.readObject(); System.out.println("Deserialized " + emp.fName + " " + emp.lName + " from emp.ser "); }catch(IOException e){ e.printStackTrace(); }catch(ClassNotFoundException e){ e.printStackTrace(); }

Question: What is Externalizable Interface ?
Answer: Externalizable interface is a subclass of Serializable. Java provides Externalizable interface that gives you more control over what is being serialized and it can produce smaller object footprint. (You can serialize whatever field values you want to serialize)

This interface defines 2 methods: readExternal() and writeExternal() and you have to implement these methods in the class that will be serialized. In these methods you'll have to write code that reads/writes only the values of the attributes you are interested in. Programs that perform serialization and deserialization have to write and read these attributes in the same sequence.
Core Java Interview Question Page 12

[image: image63.png]

[image: image64.png]

Question: What is a transient variable?
Answer: A transient variable is a variable that may not be serialized.

Question: Which containers use a border Layout as their default layout?
Answer: The window, Frame and Dialog classes use a border layout as their default layout.

Question: Why do threads block on I/O?
Answer: Threads block on i/o (that is enters the waiting state) so that other threads may execute while the i/o Operation is performed.

Question: How are Observer and Observable used?
Answer: Objects that subclass the Observable class maintain a list of observers. When an Observable object is updated it invokes the update() method of each of its observers to notify the observers that it has changed state. The Observer interface is implemented by objects that observe Observable objects.

Question: What is synchronization and why is it important?
Answer: With respect to multithreading, synchronization is the capability to control the access of multiple threads to shared resources. Without synchronization, it is possible for one thread to modify a shared object while another thread is in the process of using or updating that object's value. This often leads to significant errors.

Question: Can a lock be acquired on a class?
Answer: Yes, a lock can be acquired on a class. This lock is acquired on the class's Class object.

Question: What's new with the stop(), suspend() and resume() methods in JDK 1.2?
Answer: The stop(), suspend() and resume() methods have been deprecated in JDK 1.2.

Question: Is null a keyword?
Answer: The null value is not a keyword.

Question: What is the preferred size of a component?
Answer: The preferred size of a component is the minimum component size that will allow the component to display normally.

Question: What method is used to specify a container's layout?
Answer: The setLayout() method is used to specify a container's layout.

Question: Which containers use a FlowLayout as their default layout?
Answer: The Panel and Applet classes use the FlowLayout as their default layout.

Question: What state does a thread enter when it terminates its processing?
Answer: When a thread terminates its processing, it enters the dead state.

Question: What is the Collections API?
Answer: The Collections API is a set of classes and interfaces that support operations on collections of objects.

Question: Which characters may be used as the second character of an identifier, but not as the first character of an identifier?
Answer: The digits 0 through 9 may not be used as the first character of an identifier but they may be used after the first character of an identifier.

Question: What is the List interface?
Answer: The List interface provides support for ordered collections of objects.

Question: How does Java handle integer overflows and underflows?
Answer: It uses those low order bytes of the result that can fit into the size of the type allowed by the operation.

Question: What is the Vector class?
Answer: The Vector class provides the capability to implement a growable array of objects

Question: What modifiers may be used with an inner class that is a member of an outer class?
Answer: A (non-local) inner class may be declared as public, protected, private, static, final, or abstract.

Core Java Interview Question Page 13

[image: image68.png]

[image: image69.png]

Question: What is an Iterator interface?
Answer: The Iterator interface is used to step through the elements of a Collection.

Question: What is the difference between the >> and >>> operators?
Answer: The >> operator carries the sign bit when shifting right. The >>> zero-fills bits that have been shifted out.

Question: Which method of the Component class is used to set the position and size of a component?
Answer: setBounds()

Question: How many bits are used to represent Unicode, ASCII, UTF-16, and UTF-8 characters?
Answer: Unicode requires 16 bits and ASCII require 7 bits. Although the ASCII character set uses only 7 bits, it is usually represented as 8 bits. UTF-8 represents characters using 8, 16, and 18 bit patterns. UTF-16 uses 16-bit and larger bit patterns.

Question: What is the difference between yielding and sleeping?
Answer: When a task invokes its yield() method, it returns to the ready state. When a task invokes its sleep() method, it returns to the waiting state.

Question: Which java.util classes and interfaces support event handling?
Answer: The EventObject class and the EventListener interface support event processing.

Question: Is sizeof a keyword?
Answer: The sizeof operator is not a keyword.

Question: What are wrapped classes?
Answer: Wrapped classes are classes that allow primitive types to be accessed as objects.

Question: Does garbage collection guarantee that a program will not run out of memory?
Answer: Garbage collection does not guarantee that a program will not run out of memory. It is possible for programs to use up memory resources faster than they are garbage collected. It is also possible for programs to create objects that are not subject to garbage collection

Question: What restrictions are placed on the location of a package statement within a source code file?
Answer: A package statement must appear as the first line in a source code file (excluding blank lines and comments).

Question: Can an object's finalize() method be invoked while it is reachable?
Answer: An object's finalize() method cannot be invoked by the garbage collector while the object is still reachable. However, an object's finalize() method may be invoked by other objects.

Question: What is the immediate superclass of the Applet class?
Answer: Panel

Question: What is the difference between preemptive scheduling and time slicing?
Answer: Under preemptive scheduling, the highest priority task executes until it enters the waiting or dead states or a higher priority task comes into existence. Under time slicing, a task executes for a predefined slice of time and then reenters the pool of ready tasks. The scheduler then determines which task should execute next, based on priority and other factors.

Question: Name three Component subclasses that support painting.
Answer: The Canvas, Frame, Panel, and Applet classes support painting.

Question: What value does readLine() return when it has reached the end of a file?
Answer: The readLine() method returns null when it has reached the end of a file.

Question: What is the immediate superclass of the Dialog class?
Answer: Window

Core Java Interview Question Page 14

[image: image73.png]

[image: image74.png]

Question: What is clipping?
Answer: Clipping is the process of confining paint operations to a limited area or shape.

Question: What is a native method?
Answer: A native method is a method that is implemented in a language other than Java.

Question: Can a for statement loop indefinitely?
Answer: Yes, a for statement can loop indefinitely. For example, consider the following: for(;;) ;

Question: What are order of precedence and associativity, and how are they used?
Answer: Order of precedence determines the order in which operators are evaluated in expressions. Associatity determines whether an expression is evaluated left-to-right or right-to-left

Question: When a thread blocks on I/O, what state does it enter?
Answer: A thread enters the waiting state when it blocks on I/O.

Question: To what value is a variable of the String type automatically initialized?
Answer: The default value of an String type is null.

Question: What is the catch or declare rule for method declarations?
Answer: If a checked exception may be thrown within the body of a method, the method must either catch the exception or declare it in its throws clause.

Question: What is the difference between a MenuItem and a CheckboxMenuItem?
Answer: The CheckboxMenuItem class extends the MenuItem class to support a menu item that may be checked or unchecked.

Question: What is a task's priority and how is it used in scheduling?
Answer: A task's priority is an integer value that identifies the relative order in which it should be executed with respect to other tasks. The scheduler attempts to schedule higher priority tasks before lower priority tasks.

Question: What class is the top of the AWT event hierarchy?
Answer: The java.awt.AWTEvent class is the highest-level class in the AWT event-class hierarchy.

Question: When a thread is created and started, what is its initial state?
Answer: A thread is in the ready state after it has been created and started.

Question: Can an anonymous class be declared as implementing an interface and extending a class?
Answer: An anonymous class may implement an interface or extend a superclass, but may not be declared to do both.

Question: What is the range of the short type?
Answer: The range of the short type is -(2^15) to 2^15 - 1.

Question: What is the range of the char type?
Answer: The range of the char type is 0 to 2^16 - 1.

Question: In which package are most of the AWT events that support the event-delegation model defined?
Answer: Most of the AWT-related events of the event-delegation model are defined in the java.awt.event package. The AWTEvent class is defined in the java.awt package.

Question: What is the immediate superclass of Menu?
Answer: MenuItem

Question: What is the purpose of finalization?
Answer: The purpose of finalization is to give an unreachable object the opportunity to perform any cleanup processing before the object is garbage collected.

Question: Which class is the immediate superclass of the MenuComponent class.
Answer: Object

Core Java Interview Question Page 17

[image: image78.png]

[image: image79.png]

Question: What is the difference between a Window and a Frame?
Answer: The Frame class extends Window to define a main application window that can have a menu bar.

Question: Which class is extended by all other classes?
Answer: The Object class is extended by all other classes.

Question: Can an object be garbage collected while it is still reachable?
Answer: A reachable object cannot be garbage collected. Only unreachable objects may be garbage collected..

Question: Is the ternary operator written x : y ? z or x ? y : z ?
Answer: It is written x ? y : z.

Question: What is the difference between the Font and FontMetrics classes?
Answer: The FontMetrics class is used to define implementation-specific properties, such as ascent and descent, of a Font object.

Question: How is rounding performed under integer division?
Answer: The fractional part of the result is truncated. This is known as rounding toward zero.

Question: What happens when a thread cannot acquire a lock on an object?
Answer: If a thread attempts to execute a synchronized method or synchronized statement and is unable to acquire an object's lock, it enters the waiting state until the lock becomes available.

Question: What is the difference between the Reader/Writer class hierarchy and the InputStream/OutputStream class hierarchy?
Answer: The Reader/Writer class hierarchy is character-oriented, and the InputStream/OutputStream class hierarchy is byte-oriented.

Question: What classes of exceptions may be caught by a catch clause?
Answer: A catch clause can catch any exception that may be assigned to the Throwable type. This includes the Error and Exception types.

Question: If a class is declared without any access modifiers, where may the class be accessed?
Answer: A class that is declared without any access modifiers is said to have package access. This means that the class can only be accessed by other classes and interfaces that are defined within the same package.

Question: What is the SimpleTimeZone class?
Answer: The SimpleTimeZone class provides support for a Gregorian calendar.

Question: What is the Map interface?
Answer: The Map interface replaces the JDK 1.1 Dictionary class and is used associate keys with values.

Question: Does a class inherit the constructors of its superclass?
Answer: A class does not inherit constructors from any of its superclasses.

Question: For which statements does it make sense to use a label?
Answer: The only statements for which it makes sense to use a label are those statements that can enclose a break or continue statement.

Question: What is the purpose of the System class?
Answer: The purpose of the System class is to provide access to system resources.

Question: Which TextComponent method is used to set a TextComponent to the read-only state?
Answer: setEditable()

Question: How are the elements of a CardLayout organized?
Answer: The elements of a CardLayout are stacked, one on top of the other, like a deck of cards.

Core Java Interview Question Page 18

[image: image83.png]

[image: image84.png]

Question: Is &&= a valid Java operator?
Answer: No, it is not.

Question: Name the eight primitive Java types.
Answer: The eight primitive types are byte, char, short, int, long, float, double, and boolean.

Question: Which class should you use to obtain design information about an object?
Answer: The Class class is used to obtain information about an object's design.

Question: What is the relationship between clipping and repainting?
Answer: When a window is repainted by the AWT painting thread, it sets the clipping regions to the area of the window that requires repainting.

Question: Is "abc" a primitive value?
Answer: The String literal "abc" is not a primitive value. It is a String object.

Question: What is the relationship between an event-listener interface and an event-adapter class?
Answer: An event-listener interface defines the methods that must be implemented by an event handler for a particular kind of event. An event adapter provides a default implementation of an event-listener interface.

Question: What restrictions are placed on the values of each case of a switch statement?
Answer: During compilation, the values of each case of a switch statement must evaluate to a value that can be promoted to an int value.

Question: What modifiers may be used with an interface declaration?
Answer: An interface may be declared as public or abstract.

Question: Is a class a subclass of itself?
Answer: A class is a subclass of itself.

Question: What is the highest-level event class of the event-delegation model?
Answer: The java.util.EventObject class is the highest-level class in the event-delegation class hierarchy.

Question: What event results from the clicking of a button?
Answer: The ActionEvent event is generated as the result of the clicking of a button.

Question: How can a GUI component handle its own events?
Answer: A component can handle its own events by implementing the required event-listener interface and adding itself as its own event listener.

Question: What is the difference between a while statement and a dostatement?
Answer: A while statement checks at the beginning of a loop to see whether the next loop iteration should occur. A do statement checks at the end of a loop to see whether the next iteration of a loop should occur. The do statement will always execute the body of a loop at least once.

Question: How are the elements of a GridBagLayout organized?
Answer: The elements of a GridBagLayout are organized according to a grid. However, the elements are of different sizes and may occupy more than one row or column of the grid. In addition, the rows and columns may have different sizes.

Question: What advantage do Java's layout managers provide over traditional windowing systems?
Answer: Java uses layout managers to lay out components in a consistent manner across all windowing platforms. Since Java's layout managers aren't tied to absolute sizing and positioning, they are able to accomodate platform-specific differences among windowing systems.

Question: What is the Collection interface?
Answer: The Collection interface provides support for the implementation of a mathematical bag - an unordered collection of objects that may contain duplicates.

Question: What modifiers can be used with a local inner class?
Answer: A local inner class may be final or abstract.

Core Java Interview Question Page 19

[image: image88.png]

[image: image89.png]

Question: What is the difference between static and non-static variables?
Answer: A static variable is associated with the class as a whole rather than with specific instances of a class. Non-static variables take on unique values with each object instance.

Question: What is the difference between the paint() and repaint() methods?
Answer: The paint() method supports painting via a Graphics object. The repaint() method is used to cause paint() to be invoked by the AWT painting thread.

Question: What is the purpose of the File class?
Answer: The File class is used to create objects that provide access to the files and directories of a local file system.

Question: Can an exception be rethrown?
Answer: Yes, an exception can be rethrown.

Question: Which Math method is used to calculate the absolute value of a number?
Answer: The abs() method is used to calculate absolute values.

Question: How does multithreading take place on a computer with a single CPU?
Answer: The operating system's task scheduler allocates execution time to multiple tasks. By quickly switching between executing tasks, it creates the impression that tasks execute sequentially.

Question: When does the compiler supply a default constructor for a class?
Answer: The compiler supplies a default constructor for a class if no other constructors are provided.

Question: When is the finally clause of a try-catch-finally statement executed?
Answer: The finally clause of the try-catch-finally statement is always executed unless the thread of execution terminates or an exception occurs within the execution of the finally clause.

Question: Which class is the immediate superclass of the Container class?
Answer: Component

Question: If a method is declared as protected, where may the method be accessed?
Answer: A protected method may only be accessed by classes or interfaces of the same package or by subclasses of the class in which it is declared.

Question: How can the Checkbox class be used to create a radio button?
Answer: By associating Checkbox objects with a CheckboxGroup.

Question: Which non-Unicode letter characters may be used as the first character of an identifier?
Answer: The non-Unicode letter characters $ and _ may appear as the first character of an identifier

Question: What restrictions are placed on method overloading?
Answer: Two methods may not have the same name and argument list but different return types.

Question: What happens when you invoke a thread's interrupt method while it is sleeping or waiting?
Answer: When a task's interrupt() method is executed, the task enters the ready state. The next time the task enters the running state, an InterruptedException is thrown.

Question: What is casting?
Answer: There are two types of casting, casting between primitive numeric types and casting between object references. Casting between numeric types is used to convert larger values, such as double values, to smaller values, such as byte values. Casting between object references is used to refer to an object by a compatible class, interface, or array type reference.

Question: What is the return type of a program's main() method?
Answer: A program's main() method has a void return type.

Core Java Interview Question Page 21

[image: image93.png]

[image: image94.png]

Question: How are the elements of a GridLayout organized?
Answer: The elements of a GridBad layout are of equal size and are laid out using the squares of a grid.

Question: What an I/O filter?
Answer: An I/O filter is an object that reads from one stream and writes to another, usually altering the data in some way as it is passed from one stream to another.

Question: If an object is garbage collected, can it become reachable again?
Answer: Once an object is garbage collected, it ceases to exist.It can no longer become reachable again.

Question: What is the Set interface?
Answer: The Set interface provides methods for accessing the elements of a finite mathematical set. Sets do not allow duplicate elements.

Question: What classes of exceptions may be thrown by a throw statement?
Answer: A throw statement may throw any expression that may be assigned to the Throwable type.

Question: What are E and PI?
Answer: E is the base of the natural logarithm and PI is mathematical value pi.

Question: Are true and false keywords?
Answer: The values true and false are not keywords.

Question: What is a void return type?
Answer: A void return type indicates that a method does not return a value.

Question: What is the purpose of the enableEvents() method?
Answer: The enableEvents() method is used to enable an event for a particular object. Normally, an event is enabled when a listener is added to an object for a particular event. The enableEvents() method is used by objects that handle events by overriding their event-dispatch methods.

Question: What is the difference between the File and RandomAccessFile classes?
Answer: The File class encapsulates the files and directories of the local file system. The RandomAccessFile class provides the methods needed to directly access data contained in any part of a file.

Question: What happens when you add a double value to a String?
Answer: The result is a String object.

Question: What is your platform's default character encoding?
Answer: If you are running Java on English Windows platforms, it is probably Cp1252. If you are running Java on English Solaris platforms, it is most likely 8859_1..

Question: Which package is always imported by default?
Answer: The java.lang package is always imported by default.

Question: What interface must an object implement before it can be written to a stream as an object?
Answer: An object must implement the Serializable or Externalizable interface before it can be written to a stream as an object.

Question: How are this and super used?
Answer: this is used to refer to the current object instance. super is used to refer to the variables and methods of the superclass of the current object instance.

Question: What is the purpose of garbage collection?
Answer: The purpose of garbage collection is to identify and discard objects that are no longer needed by a program so that their resources may be reclaimed and reused.

Core Java Interview Question Page 24

[image: image98.png]

[image: image99.png]

Question: Why do we need public static void main(String args[]) method in Java
Answer: We need

· public: The method can be accessed outside the class / package

· static: You need not have an instance of the class to access the method

· void: Your application need not return a value, as the JVM launcher would return the value when it exits

· main(): This is the entry point for the application

If the main() was not static, you would require an instance of the class in order to execute the method.
If this is the case, what would create the instance of the class? What if your class did not have a public constructor?

Question: What is the difference between an Interface and an Abstract class
Answer: In abstract class you can define as well as declare methods, the methods which are declared are to be marked as abstract.
In interface all we just declare methods and the definition is provided by the class which is implementing it

Question: Explain serialization
Answer: Serialization means storing a state of a java object by coverting it to byte stream

Question: What are the rules of serialization
Answer: Rules:
1. Static fileds are not serialized because they are not part of any one particular object
2. Fileds from the base class are handled only if hose are serializable
3. Transient fileds are not serialized

Question: What is difference between error and exception
Answer: Error occurs at runtime and cannot be recovered, Outofmemory is one such example. Exceptions on the other hand are due conditions which the application encounters such as FileNotFound exception or IO exceptions

Question: What do you mean by object oreiented programming
Answer: In object oreinted programming the emphasis is more on data than on the procedure and the program is divided into objects.
The data fields are hidden and they cant be accessed by external functions.
The design approach is bottom up.
The functions operate on data that is tied together in data structure

Question: What are 4 pillars of object oreinted programming
Answer:

1. Abstraction
It means hiding the details and only exposing the essentioal parts

2. Polymorphism
Polymorphism means having many forms. In java you can see polymorphism when you have multiple methods with the same name

3. Inheritance
Inheritance means the child class inherits the non private properties of the parent class

4. Encapsulation
It means data hiding. In java with encapsulate the data by making it private and even we want some other class to work on that data then the setter and getter methods are provided

Question: Difference between procedural and object oreinted language
Answer: In procedural programming the instructions are executed one after another and the data is exposed to the whole program
In OOPs programming the unit of program is an object which is nothing but combination of data and code and the data is not exposed outside the object

Question: What is the difference between constructor and method
Answer: Constructor will be automatically invoked when an object is created whereas method has to be called explicitly.

Question: What is the difference between parameters and arguments
Answer: While defining method, variables passed in the method are called parameters. While using those methods, values passed to those variables are called arguments.

Question: What is reflection in java
Answer: Reflection allows Java code to discover information about the fields, methods and constructors of loaded classes and to dynamically invoke them

Question: What is a cloneable interface and how many methods does it contain
Answer: It is not having any method because it is a TAGGED or MARKER interface

Question: What's the difference between a queue and a stack

Answer: Stacks works by last-in-first-out rule (LIFO), while queues use the FIFO rule

Question: Can you make an instance of abstract class

Answer: No you cannot create an instance of abstract class

Question: What are parsers

Answer: Parsers are used for processing XML documents. There are 2 types of parsers DOM parser and SAX Parser

Question: Difference between SAX and DOM parser
Answer: DOM parsers are Object based and SAX parsers are event based
DOM parsers creates Tree in the memory whereas SAX parser does not and hence it is faster than DOM
DOM parser are useful when we have to modify the XML, with SAX parser you cannot modify the xml, it is read only

Question: What is the difference between Java Bean and Java Class

Answer: Basically a Bean is a java class but it has getter and setter method and it does not have any logic in it, it is used for holding data.
On the other hand the Java class can have what a java bean has and also has some logic inside it

Core Java Interview Question Page 30

[image: image103.png]

[image: image104.png]

Objects and Classes

Question: What's the difference between constructors and other methods
Answer: Constructors must have the same name as the class and can not return a value. They are only called once while regular methods could be called many times.

Question: What is the difference between Overloading and Overriding
Answer: Overloading : Reusing the same method name with different arguments and perhaps a different return type is called as overloading
Overriding : Using the same method name with identical arguments and return type is know as overriding

Question: What do you understand by late binding or virtual method Invocation. (Example of runtime polymorphism)
Answer: When a compiler for a non object oriented language comes across a method invocation, it determines exactly what target code should be called and build machine language to represent that call. In an object oriented language, this is not possible since the proper code to invoke is determined based upon the class if the object being used to make the call, not the type of the variable. Instead code is generated that will allow the decision to be made at run time. This delayed decision making is called as late binding

Question: Can overriding methods have different return types
Answer: No they cannot have different return types

Question: If the method to be overridden has access type protected, can subclass have the access type as private
Answer: No, it must have access type as protected or public, since an overriding method must not be less accessible than the method it overrides

Question: Can constructors be overloaded
Answer: Yes constructors can be overloaded

Question: What happens when a constructor of the subclass is called
Answer: A constructor delays running its body until the parent parts of the class have been initialized. This commonly happens because of an implicit call to super() added by the compiler. You can provide your own call to super(arguments..) to control the way the parent parts are initialized. If you do this, it must be the first statement of the constructor.

Question: If you use super() or this() in a constructor where should it appear in the constructor
Answer: It should always be the first statement in the constructor

Question: What is an inner class
Answer: An inner class is same as any other class, but is declared inside some other class

Question: How will you reference the inner class
Answer: To reference it you will have to use OuterClass$InnerClass

Question: Can objects that are instances of inner class access the members of the outer class
Answer: Yes they can access the members of the outer class

Question: What modifiers may be used with an inner class that is a member of an outer class?
Answer: A (non-local) inner class may be declared as public, protected, private, static, final, or abstract

Question: Can inner classes be static
Answer: Yes inner classes can be static, but they cannot access the non static data of the outer classes, though they can access the static data

Question: Can an inner class be defined inside a method
Answer: Yes it can be defined inside a method and it can access data of the enclosing methods or a formal parameter if it is final

Question: What is an anonymous class
Answer: Some classes defined inside a method do not need a name, such classes are called anonymous classes

Question: What are the rules of anonymous class
Answer: The class is instantiated and declared in the same place The declaration and instantiation takes the form new Xxxx () {// body}
Where Xxxx is an interface name. An anonymous class cannot have a constructor. Since you do not specify a name for the class, you cannot use that name to specify a constructor
JSP Interview : JSP Interview Questions -2

[image: image108.png]

[image: image109.png]

Page of the JSP Interview Questions.
Question: What is JSP Custom tags?
Answer: JSP Custom tags are user defined JSP language element. JSP custom tags are user defined tags that can encapsulate common functionality. For example you can write your own tag to access the database and performing database operations. You can also write custom tag for encapsulate both simple and complex behaviors in an easy to use syntax and greatly simplify the readability of JSP pages.

Question: What is JSP?
Answer: JavaServer Pages (JSP) technology is the Java platform technology for delivering dynamic content to web clients in a portable, secure and well-defined way. The JavaServer Pages specification extends the Java Servlet API to provide web application developers
Question: What is the role of JSP in MVC Model?
Answer: JSP is mostly used to develop the user interface, It plays are role of View in the MVC Model.
Question: What do you understand by context initialization parameters?
Answer: The context-param element contains the declaration of a web application's servlet context initialization parameters.
<context-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
</context-param>
The Context Parameters page lets you manage parameters that are accessed through the ServletContext.getInitParameterNames and ServletContext.getInitParameter methods.
Question: Can you extend JSP technology?
Answer: JSP technology lets the programmer to extend the jsp to make the programming more easier. JSP can be extended and custom actions and tag libraries can be developed.
[image: image114.png]

[image: image115.png]

Question: What do you understand by JSP translation?
Answer: JSP translators generate standard Java code for a JSP page implementation class. This class is essentially a servlet class wrapped with features for JSP functionality.
Question: What you can stop the browser to cash your page?
Answer: Instead of deleting a cache, you can force the browser not to catch the page.
<%
response.setHeader("pragma","no-cache");//HTTP 1.1
response.setHeader("Cache-Control","no-cache");
response.setHeader("Cache-Control","no-store");
response.addDateHeader("Expires", -1);
response.setDateHeader("max-age", 0);
//response.setIntHeader ("Expires", -1); //prevents caching at the proxy server
response.addHeader("cache-Control", "private");

%>
put the above code in your page.
Question: What you will handle the runtime exception in your jsp page?
Answer: The errorPage attribute of the page directive can be used to catch run-time exceptions automatically and then forwarded to an error processing page.
For example:
<%@ page errorPage="customerror.jsp" %>
above code forwards the request to "customerror.jsp" page if an uncaught exception is encountered during request processing. Within "customerror.jsp", you must indicate that it is an error-processing page, via the directive: <%@ page isErrorPage="true" %>.
JDBC Driver and Its Types
[image: image116.png]

[image: image117.png]

JDBC Driver Manager

The JDBC DriverManager class defines objects which can connect Java applications to a JDBC driver. DriverManager has traditionally been the backbone of the JDBC architecture. It is quite small and simple.

This is a very important class. Its main purpose is to provide a means of managing the different types of JDBC database driver. On running an application, it is the DriverManager's responsibility to load all the drivers found in the system property jdbc. drivers. For example, this is where the driver for the Oracle database may be defined. This is not to say that a new driver cannot be explicitly stated in a program at runtime which is not included in jdbc.drivers. When opening a connection to a database it is the DriverManager' s role to choose the most appropriate driver from the previously loaded drivers.

The JDBC API defines the Java interfaces and classes that programmers use to connect to databases and send queries. A JDBC driver implements these interfaces and classes for a particular DBMS vendor.

A Java program that uses the JDBC API loads the specified driver for a particular DBMS before it actually connects to a database. The JDBC DriverManager class then sends all JDBC API calls to the loaded driver.
JDBC Driver

This topic defines the Java(TM) Database Connectivity (JDBC) driver types. Driver types are used to categorize the technology used to connect to the database. A JDBC driver vendor uses these types to describe how their product operates. Some JDBC driver types are better suited for some applications than others.

Types of JDBC drivers

This topic defines the Java(TM) Database Connectivity (JDBC) driver types. Driver types are used to categorize the technology used to connect to the database. A JDBC driver vendor uses these types to describe how their product operates. Some JDBC driver types are better suited for some applications than others.

 There are four types of JDBC drivers known as:
· JDBC-ODBC bridge plus ODBC driver, also called Type 1.
· Native-API, partly Java driver, also called Type 2.
· JDBC-Net, pure Java driver, also called Type 3.
· Native-protocol, pure Java driver, also called Type 4.
Type 1 Driver- the JDBC-ODBC bridge

The JDBC type 1 driver, also known as the JDBC-ODBC bridge is a database driver implementation that employs the ODBC driver to connect to the database. The driver converts JDBC method calls into ODBC function calls. The bridge is usually used when there is no pure-Java driver available for a particular database.

The driver is implemented in the sun.jdbc.odbc.JdbcOdbcDriver class and comes with the Java 2 SDK, Standard Edition. The driver is platform-dependent as it makes use of ODBC which in turn depends on native libraries of the operating system. Also, using this driver has got other dependencies such as ODBC must be installed on the computer having the driver and the database which is being connected to must support an ODBC driver. Hence the use of this driver is discouraged if the alternative of a pure-Java driver is available.

Type 1 is the simplest of all but platform specific i.e only to Microsoft platform.

A JDBC-ODBC bridge provides JDBC API access via one or more ODBC drivers. Note that some ODBC native code and in many cases native database client code must be loaded on each client machine that uses this type of driver. Hence, this kind of driver is generally most appropriate when automatic installation and downloading of a Java technology application is not important. For information on the JDBC-ODBC bridge driver provided by Sun, see JDBC-ODBC Bridge Driver.

Type 1 drivers are "bridge" drivers. They use another technology such as Open Database Connectivity (ODBC) to communicate with a database. This is an advantage because ODBC drivers exist for many Relational Database Management System (RDBMS) platforms. The Java Native Interface (JNI) is used to call ODBC functions from the JDBC driver.

A Type 1 driver needs to have the bridge driver installed and configured before JDBC can be used with it. This can be a serious drawback for a production application. Type 1 drivers cannot be used in an applet since applets cannot load native code.

Functions:
1. Translates query obtained by JDBC into corresponding ODBC query, which is then handled by the ODBC driver.
2. Sun provides a JDBC-ODBC Bridge driver. sun.jdbc.odbc.JdbcOdbcDriver. This driver is native code and not Java, and is closed
 source.
3. Client -> JDBC Driver -> ODBC Driver -> Database
4. There is some overhead associated with the translation work to go from JDBC to ODBC.
Advantages:

Almost any database for which ODBC driver is installed, can be accessed.

Disadvantages:
1. Performance overhead since the calls have to go through the JDBC overhead bridge to the ODBC driver, then to the native database connectivity interface.
2. The ODBC driver needs to be installed on the client machine.
3. Considering the client-side software needed, this might not be suitable for applets.
Type 2 Driver - the Native-API Driver

The JDBC type 2 driver, also known as the Native-API driver is a database driver implementation that uses the client-side libraries of the database. The driver converts JDBC method calls into native calls of the database API.

The type 2 driver is not written entirely in Java as it interfaces with non-Java code that makes the final database calls.
The driver is compiled for use with the particular operating system. For platform interoperability, the Type 4 driver, being
a full-Java implementation, is preferred over this driver.

A native-API partly Java technology-enabled driver converts JDBC calls into calls on the client API for Oracle, Sybase, Informix, DB2, or other DBMS. Note that, like the bridge driver, this style of driver requires that some binary code be loaded on each client machine.

However the type 2 driver provides more functionality and performance than the type 1 driver as it does not have the overhead of the additional ODBC function calls.

Type 2 drivers use a native API to communicate with a database system. Java native methods are used to invoke the API functions that perform database operations. Type 2 drivers are generally faster than Type 1 drivers.

Type 2 drivers need native binary code installed and configured to work. A Type 2 driver also uses the JNI. You cannot use a Type 2 driver in an applet since applets cannot load native code. A Type 2 JDBC driver may require some Database Management System (DBMS) networking software to be installed.

The Developer Kit for Java JDBC driver is a Type 2 JDBC driver.

Functions:
1. This type of driver converts JDBC calls into calls to the client API for that database.
2. Client -> JDBC Driver -> Vendor Client DB Library -> Database
Advantage

Better performance than Type 1 since no jdbc to odbc translation is needed.

Disadvantages
1. The vendor client library needs to be installed on the client machine.
2. Cannot be used in internet due the client side software needed.
3. Not all databases give the client side library.
Type 3 driver - the Network-Protocol Driver

The JDBC type 3 driver, also known as the network-protocol driver is a database driver implementation which makes use of a middle-tier between the calling program and the database. The middle-tier (application server) converts JDBC calls directly or indirectly into the vendor-specific database protocol.
This differs from the type 4 driver in that the protocol conversion logic resides not at the client, but in the middle-tier. However, like type 4 drivers, the type 3 driver is written entirely in Java.
The same driver can be used for multiple databases. It depends on the number of databases the middleware has been configured to support. The type 3 driver is platform-independent as the platform-related differences are taken care by the middleware. Also, making use of the middleware provides additional advantages of security and firewall access.
A net-protocol fully Java technology-enabled driver translates JDBC API calls into a DBMS-independent net protocol which is then translated to a DBMS protocol by a server. This net server middleware is able to connect all of its Java technology-based clients to many different databases. The specific protocol used depends on the vendor. In general, this is the most flexible JDBC API alternative. It is likely that all vendors of this solution will provide products suitable for Intranet use. In order for these products to also support Internet access they must handle the additional requirements for security, access through firewalls, etc., that the Web imposes. Several vendors are adding JDBC technology-based drivers to their existing database middleware products.
These drivers use a networking protocol and middleware to communicate with a server. The server then translates the protocol to DBMS function calls specific to DBMS.
Type 3 JDBC drivers are the most flexible JDBC solution because they do not require any native binary code on the client. A Type 3 driver does not need any client installation.

Functions:
1. Follows a three tier communication approach.
2. Can interface to multiple databases - Not vendor specific.
3. The JDBC Client driver written in java, communicates with a middleware-net-server using a database independent protocol, and then this net server translates this request into database commands for that database.
4. Thus the client driver to middleware communication is database independent.
5. Client -> JDBC Driver -> Middleware-Net Server -> Any Database
Advantages
1. Since the communication between client and the middleware server is database independent, there is no need for the vendor db library on the client machine. Also the client to middleware need'nt be changed for a new database.
2. The Middleware Server (Can be a full fledged J2EE Application server) can provide typical middleware services like caching (connections, query results, and so on), load balancing, logging, auditing etc..
3. eg. for the above include jdbc driver features in Weblogic.
4. Can be used in internet since there is no client side software needed.
5. At client side a single driver can handle any database.(It works provided the middlware supports that database!!)
Disadvantages
1. Requires database-specific coding to be done in the middle tier.
2. An extra layer added may result in a time-bottleneck. But typically this is overcome by providing efficient middleware
 services described above.
Type 4 - the Native-Protocol Driver

The JDBC type 4 driver, also known as the native-protocol driver is a database driver implementation that converts JDBC calls directly into the vendor-specific database protocol.

The type 4 driver is written completely in Java and is hence platform independent. It is installed inside the Java Virtual Machine of the client. It provides better performance over the type 1 and 2 drivers as it does not have the overhead of conversion of calls into ODBC or database API calls. Unlike the type 1 and 2 drivers, it does not need associated software to work.

A native-protocol fully Java technology-enabled driver converts JDBC technology calls into the network protocol used by DBMSs directly. This allows a direct call from the client machine to the DBMS server and is a practical solution for Intranet access. Since many of these protocols are proprietary the database vendors themselves will be the primary source for this style of driver. Several database vendors have these in progress.

As the database protocol is vendor-specific, separate drivers, usually vendor-supplied, need to be used to connect to the database.

A Type 4 driver uses Java to implement a DBMS vendor networking protocol. Since the protocols are usually proprietary, DBMS vendors are generally the only companies providing a Type 4 JDBC driver.

Type 4 drivers are all Java drivers. This means that there is no client installation or configuration. However, a Type 4 driver may not be suitable for some applications if the underlying protocol does not handle issues such as security and network connectivity well.

The IBM Toolbox for Java JDBC driver is a Type 4 JDBC driver, indicating that the API is a pure Java networking protocol driver.

Functions
1. Type 4 drivers are entirely written in Java that communicate directly with a vendor's database through socket connections. No translation or middleware layers, are required, improving performance.
2. The driver converts JDBC calls into the vendor-specific database protocol so that client applications can communicate directly with the database server.
3. Completely implemented in Java to achieve platform independence.
4. e.g include the widely used Oracle thin driver - oracle.jdbc.driver. OracleDriver which connect to jdbc:oracle:thin URL format.
5. Client Machine -> Native protocol JDBC Driver -> Database server
Advantages

These drivers don't translate the requests into db request to ODBC or pass it to client api for the db, nor do they need a middleware layer for request indirection. Thus the performance is considerably improved.

Disadvantage

At client side, a separate driver is needed for each database.
PAGE
79

