
Running another Executable Program Using Shell Command
Visual Basic 6.0
Introduction:
We've lot of components in VB, but some of these we rarely need like “Running another Executable program from the Visual basic application”.
Purpose:
The purpose of this document is to explain how to run another executable program from the visual basic Application.

Runs an executable program and returns an integer containing the program's process ID if it is still running.
This Procedure is intended to execute another application from the visual basic function.
Shell

Syntax:
	Shell(PathName,[WindowStyle as VbAppWinstyle = AppWinStyle.MinimizedFocus]
) As Double

Parameters
Pathname

It is a String parameter. You should give the name of the program to execute, together with any required arguments and command-line switches.
Pathname can also include the drive and the directory path or folder.
If you do not know the path to the program,
You can use the My.Computer.FileSystem.GetFiles Method to locate it.
For example,
You can call My.Computer.FileSystem.GetFiles("C:\", True, "testFile.txt"), which returns the full path of every file named testFile.txt anywhere on drive C:\.
Style

This is Optional argument. AppWinStyle.
A value chosen from the AppWinStyle Enumeration specifying the style of the window in which the program is to run.
If Style is omitted, Shell uses AppWinStyle.MinimizedFocus, which starts the program minimized and with focus.

 Code:
The following example uses the Shell function to run an application specified by the user. Specifying Microsoft.VisualBasic.AppWinStyle.NormalFocus as the second argument opens the application in normal size and gives it the focus.

	' **
' Function Name : Shell
' Purpose : Running another Executable program from the

 Visual basic application
' Parameter List : PathName, WindowStyle as VbAppWinstyle
'**

'Declaring Variable

Dim procID As Integer

Private Sub Cmd_Calc_Click()

'Run Calculator.

procID = Shell("C:\Windows\system32\calc.exe", vbNormalFocus)

End Sub

Private Sub Cmd_Notepad_Click()

'Run Notepad.

procID = Shell("C:\Windows\system32\Notepad.exe", vbNormalFocus)

End Sub

ShellAndWaitForTermination
Syntax:
	Public Function ShellAndWaitForTermination(sShell As String, Optional ByVal eWindowStyle As VBA.VbAppWinStyle = vbNormalFocus, Optional ByRef sError As String, Optional ByVal lTimeOut As Long = 2000000000) As Boolean

Parameters:
sShell:

It is a String parameter. You should give the name of the program to execute.

Style:
This is Optional argument. AppWinStyle.

A value chosen from the AppWinStyle Enumeration specifying the style of the window in which the program is to run.

If Style is omitted, Shell uses AppWinStyle.MinimizedFocus, which starts the program minimized and with focus
sError:
This is Optional argument. If there is any error during shell execute, this variable will hold the error message

lTimeOut:

This is Optional argument. By default the value will be 2000000000
Code:

The following example uses the ShellAndWaitForTermination function to run an application specified by the user.

The control will wait up to the Executable application has complete the job.

	Private Declare Function OpenProcess Lib "kernel32" (ByVal dwDesiredAccess As Long, ByVal bInheritHandle As Long, ByVal dwProcessID As Long) As Long

Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Private Declare Function timeGetTime Lib "winmm.dll" () As Long

Private Declare Function GetExitCodeProcess Lib "kernel32" (ByVal hProcess As Long, lpExitCode As Long) As Long

Private Const PROCESS_QUERY_INFORMATION = &H400

Private Const STILL_ACTIVE = &H103

' ***
'Function Name : ShellAndWaitForTermination
'Purpose : Running another Executable program from the

 Visual basic application
'Parameter List : PathName, WindowStyle as VbAppWinstyle
'**
Public Function ShellAndWaitForTermination(sShell As String, Optional ByVal eWindowStyle As VBA.VbAppWinStyle = vbNormalFocus, Optional ByRef sError As String, Optional ByVal lTimeOut As Long = 2000000000) As Boolean

 Dim hProcess As Long

 Dim lR As Long

 Dim lTimeStart As Long

 Dim bSuccess As Boolean

 On Error GoTo ShellAndWaitForTerminationError

 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, False, Shell(sShell, eWindowStyle))

 If (hProcess = 0) Then

 sError = "This program could not determine whether the process started. Please watch the program and check it completes."

 ' Only fail if there is an error - this can happen when the program completes too quickly.

 Else

 ' wait for five seconds

 Sleep 5000

 bSuccess = True

 lTimeStart = timeGetTime()

 Do

 ' Get the status of the process

 GetExitCodeProcess hProcess, lR

 ' Sleep during wait to ensure the other process gets

 ' processor slice:

 DoEvents: Sleep 1000

 If (timeGetTime() - lTimeStart > lTimeOut) Then

 ' Too long!

 sError = "The process has timed out."

 lR = 0

 bSuccess = False

 End If

 'Loop While nFMSDOSHandle > 0 'lR = STILL_ACTIVE

 Loop While (lR = STILL_ACTIVE) And bSuccess

 End If

 ShellAndWaitForTermination = bSuccess

 Exit Function

ShellAndWaitForTerminationError:

 sError = Err.Description

 Exit Function

End Function

How it works

The return value of the Shell function depends on whether the program named in PathName is still executing when Shell returns.

Shell returns the process ID of the program. The process ID is a unique number that identifies the running program.

Waiting for Completion

By default, the Shell function runs the program asynchronously. This means that a program started with the Shell function might not finish executing before the statements following the Shell function are executed. If you want to wait for the program to finish before you continue,
Use the function ShellAndWaitForTermination.
Conclusion:

This shell command used to run another Executable application from the Visual basic Code.
The function ShellAndWaitForTermination provide the option to wait the control until the program has to complete, which is started by the shell function might not finish executing.
A program started with the shell function might not finish executing, if you want to wait the control until the program has to complete.

[image: image1.png]

TCS Confidential

